python打卡第48天

知识点回顾:

  1. 随机张量的生成:torch.randn函数
  2. 卷积和池化的计算公式(可以不掌握,会自动计算的)
  3. pytorch的广播机制:加法和乘法的广播机制

ps:numpy运算也有类似的广播机制,基本一致

  • **torch.randn**:快速生成随机张量,适用于初始化和数据增强。

  • 卷积与池化:通过滑动窗口提取局部特征,公式决定输出尺寸。

  • 广播机制 :自动扩展维度,简化代码逻辑,提升计算效率。

    1. ​随机张量的生成:torch.randn 函数

    torch.randn 是 PyTorch 中用于生成服从标准正态分布(均值为 0,标准差为 1)的随机数的函数。其核心参数是张量的形状(*size),其他参数如数据类型、设备(CPU/GPU)等为可选配置。

    关键特性:
  • 形状参数 :通过 *size 指定张量维度,例如 torch.randn(3, 4) 生成一个 3x4 的张量。

  • 可选参数

    • dtype:数据类型(默认 float32)。
    • device:指定设备(如 cuda:0 表示 GPU)。
    • requires_grad:是否跟踪梯度(默认 False)。
  • 应用场景:初始化神经网络权重、生成随机噪声等。

python 复制代码
import torch

# 生成 2x3 的标准正态分布张量
tensor = torch.randn(2, 3)
print(tensor)

# 生成均值为 2、标准差为 0.5 的正态分布张量
custom_tensor = torch.randn(2, 2, mean=2, std=0.5)
print(custom_tensor)

2. ​卷积和池化的计算公式

卷积和池化是深度学习中常用的特征提取操作,其核心是滑动窗口内的数学运算。

卷积计算公式​(以一维为例):

离散卷积公式:

(f∗g)(n)=∑if(i)⋅g(n−i)(f * g)(n) = \sum_{i} f(i) \cdot g(n-i)(f∗g)(n)=∑i​f(i)⋅g(n−i)

  • 输入信号:长度为 MMM 的序列 xxx。

  • 卷积核:长度为 NNN 的滤波器 hhh。

  • 输出长度:M+N−1M + N - 1M+N−1(无填充且步长为 1)。

  • PyTorch 中的卷积参数

  • kernel_size:卷积核大小。

  • stride:滑动步长。

  • padding:填充大小。

  • dilation:卷积核元素间距。

池化计算公式

池化操作通过降维减少计算量,常用最大池化(Max Pooling)和平均池化(Average Pooling)。

  • 输出尺寸
    Oheight=⌊Hin+2P−KS+1⌋O_{height} = \left\lfloor \frac{H_{in} + 2P - K}{S} + 1 \right\rfloorOheight=⌊SHin+2P−K+1⌋
    Owidth=⌊Win+2P−KS+1⌋O_{width} = \left\lfloor \frac{W_{in} + 2P - K}{S} + 1 \right\rfloorOwidth=⌊SWin+2P−K+1⌋
    • Hin/WinH_{in}/W_{in}Hin/Win:输入高度/宽度。
    • K:池化核大小。
    • S:步长。
    • P:填充大小。
示例:

输入特征图尺寸为 28×2828 \times 2828×28,使用 2×22 \times 22×2 的最大池化(步长 2,无填充),输出尺寸为 14×1414 \times 1414×14。
*

3. ​PyTorch 的广播机制

广播机制允许不同形状的张量进行逐元素运算(如加法、乘法),无需显式扩展内存。

广播规则
  • 维度对齐:从右向左逐一对齐维度,若维度大小相等或其中一个为 1,则兼容。
  • 扩展维度:若张量缺少某维度,则在左侧补 1。
  • 扩展大小为 1 的维度:将大小为 1 的维度扩展为另一张量的对应维度大小。
python 复制代码
a = torch.tensor([[1, 2, 3], [4, 5, 6]])  # 形状 (2, 3)
b = torch.tensor([10, 20, 30])            # 形状 (3,)

# 广播后 b 的形状变为 (2, 3)
result = a + b
print(result)
# 输出:
# tensor([[11, 22, 33],
#         [14, 25, 36]])
相关推荐
天天找自己4 分钟前
精通分类:解析Scikit-learn中的KNN、朴素贝叶斯与决策树(含随机森林)
python·决策树·机器学习·分类·scikit-learn
R-G-B13 分钟前
【33】C# WinForm入门到精通 ——表格布局器TableLayoutPanel【属性、方法、事件、实例、源码】
开发语言·c#·c# winform·表格布局器·tablelayoutpane
郝学胜-神的一滴31 分钟前
Spring Boot Actuator 保姆级教程
java·开发语言·spring boot·后端·程序人生
赵英英俊39 分钟前
Python day31
开发语言·python
硬核子牙1 小时前
Python虚拟机内存机制底层
python
程序员-Queen1 小时前
RDQS_c和RDQS_t的作用及区别
c语言·开发语言
慕y2742 小时前
Java学习第九十三部分——RestTemplate
java·开发语言·学习
上单带刀不带妹2 小时前
JavaScript 中的宏任务与微任务
开发语言·前端·javascript·ecmascript·宏任务·微任务
旋风菠萝2 小时前
设计模式---单例
android·java·开发语言
啊呦.超能力2 小时前
QT开发---图形与图像(补充)
开发语言·qt