vla学习 富

基于diffusion

π0

架构

其核心思想是在预训练好的视觉语言模型(VLM)基础上添加一个"动作专家"(action expert),通过流匹配(flow matching)的方式生成连续的高频控制指令。整个架构可以概括为:

  • 预训练VLM Backbone

利用 PaliGemma 等大规模预训练的 VLM,将图像和文本信息嵌入统一的表示空间,继承了互联网规模的语义知识和视觉信息提取能力。

  • 跨机器人平台数据

论文中使用了来自 7 种不同机器人配置、68 个任务的大规模数据(总计约 10,000 小时),实现跨平台、跨任务的联合训练,从而提升模型的泛化能力。

  • 动作生成 via Flow Matching

针对连续动作生成的挑战,论文采用了一种基于扩散思想的流匹配方法(flow matching),使得模型能够生成高频(例如 50Hz)且精细的动作序列。与传统 autoregressive 离散生成方法相比,流匹配可以更好地处理连续控制信号和复杂动作分布。

  • 混合专家(Mixture of Experts)设计

模型内部将输入分为两大部分:一部分(图像和文本)走 VLM backbone;另一部分(机器人状态和动作)通过专门设计的"动作专家"处理,这种设计有助于更好地融合预训练知识和机器人特定的控制需求。

训练流程:预训练 + 后训练

类似大语言模型的训练流程,π0 模型的训练分为两个阶段:

  1. 预训练阶段:利用海量、但可能质量参差不齐的多任务、多平台数据,使模型具备广泛的基础能力和恢复错误的能力。

  2. 后训练(微调)阶段:使用高质量、任务特定的数据对模型进行微调,从而获得更高效、流畅和鲁棒的动作执行策略。后训练阶段能够显著提升模型在复杂、多阶段任务(如叠衣服、组装盒子等)上的表现。

添加链接描述\](https://zhuanlan.zhihu.com/p/19518316721) 这篇博客讲的更详细一些,输入输出, # 其他 π0.5 hi Robot

相关推荐
来荔枝一大筐几秒前
力扣 寻找两个正序数组的中位数
算法
算法与编程之美11 分钟前
理解Java finalize函数
java·开发语言·jvm·算法
mwq3012318 分钟前
位置编码的技术演进线路:从绝对到相对,再到几何一致性
人工智能
mwq3012326 分钟前
外推性-位置编码的阿喀琉斯之踵
人工智能
DP+GISer31 分钟前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
boonya33 分钟前
Langchain 和LangGraph 为何是AI智能体开发的核心技术
人工智能·langchain
地平线开发者33 分钟前
LLM 训练基础概念与流程简介
算法·自动驾驶
元宇宙时间35 分钟前
DID联盟:Web3数字主权基础设施的战略构建
人工智能·web3·区块链
点云SLAM37 分钟前
弱纹理图像特征匹配算法推荐汇总
人工智能·深度学习·算法·计算机视觉·机器人·slam·弱纹理图像特征匹配
星释38 分钟前
Rust 练习册 :Matching Brackets与栈数据结构
数据结构·算法·rust