vla学习 富

基于diffusion

π0

架构

其核心思想是在预训练好的视觉语言模型(VLM)基础上添加一个"动作专家"(action expert),通过流匹配(flow matching)的方式生成连续的高频控制指令。整个架构可以概括为:

  • 预训练VLM Backbone

利用 PaliGemma 等大规模预训练的 VLM,将图像和文本信息嵌入统一的表示空间,继承了互联网规模的语义知识和视觉信息提取能力。

  • 跨机器人平台数据

论文中使用了来自 7 种不同机器人配置、68 个任务的大规模数据(总计约 10,000 小时),实现跨平台、跨任务的联合训练,从而提升模型的泛化能力。

  • 动作生成 via Flow Matching

针对连续动作生成的挑战,论文采用了一种基于扩散思想的流匹配方法(flow matching),使得模型能够生成高频(例如 50Hz)且精细的动作序列。与传统 autoregressive 离散生成方法相比,流匹配可以更好地处理连续控制信号和复杂动作分布。

  • 混合专家(Mixture of Experts)设计

模型内部将输入分为两大部分:一部分(图像和文本)走 VLM backbone;另一部分(机器人状态和动作)通过专门设计的"动作专家"处理,这种设计有助于更好地融合预训练知识和机器人特定的控制需求。

训练流程:预训练 + 后训练

类似大语言模型的训练流程,π0 模型的训练分为两个阶段:

  1. 预训练阶段:利用海量、但可能质量参差不齐的多任务、多平台数据,使模型具备广泛的基础能力和恢复错误的能力。

  2. 后训练(微调)阶段:使用高质量、任务特定的数据对模型进行微调,从而获得更高效、流畅和鲁棒的动作执行策略。后训练阶段能够显著提升模型在复杂、多阶段任务(如叠衣服、组装盒子等)上的表现。

添加链接描述\](https://zhuanlan.zhihu.com/p/19518316721) 这篇博客讲的更详细一些,输入输出, # 其他 π0.5 hi Robot

相关推荐
لا معنى له2 小时前
目标检测的内涵、发展和经典模型--学习笔记
人工智能·笔记·深度学习·学习·目标检测·机器学习
AKAMAI3 小时前
Akamai Cloud客户案例 | CloudMinister借助Akamai实现多云转型
人工智能·云计算
hh随便起个名5 小时前
力扣二叉树的三种遍历
javascript·数据结构·算法·leetcode
小a杰.5 小时前
Flutter 与 AI 深度集成指南:从基础实现到高级应用
人工智能·flutter
colorknight5 小时前
数据编织-异构数据存储的自动化治理
数据仓库·人工智能·数据治理·数据湖·数据科学·数据编织·自动化治理
Lun3866buzha5 小时前
篮球场景目标检测与定位_YOLO11-RFPN实现详解
人工智能·目标检测·计算机视觉
janefir5 小时前
LangChain框架下DirectoryLoader使用报错zipfile.BadZipFile
人工智能·langchain
齐齐大魔王6 小时前
COCO 数据集
人工智能·机器学习
Dingdangcat866 小时前
城市交通多目标检测系统:YOLO11-MAN-FasterCGLU算法优化与实战应用_3
算法·目标检测·目标跟踪
tang&7 小时前
滑动窗口:双指针的优雅舞步,征服连续区间问题的利器
数据结构·算法·哈希算法·滑动窗口