二元函数可微 切平面逼近 线性函数逼近

二元函数 f ( x , y ) f(x, y) f(x,y) 在某点可微 的含义,可以从几何直观、严格数学定义、与一阶偏导数的关系三个层面来理解:


🔹1. 几何直观上的含义(最易理解)

二元函数 f ( x , y ) f(x, y) f(x,y) 在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) 可微,意味着它的图像在这一点附近可以被一个切平面 很好地逼近。

也就是说,在该点处,函数的图像看起来非常接近一个平面,这个平面就是它的切平面

✅ 图像上表现为"光滑无尖点、无突变"。


🔹2. 数学定义上的含义

函数 f ( x , y ) f(x, y) f(x,y) 在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) 可微,指存在常数 A A A 和 B B B,使得函数在该点附近有如下表达式:

f ( x , y ) = f ( x 0 , y 0 ) + A ( x − x 0 ) + B ( y − y 0 ) + o ( ( x − x 0 ) 2 + ( y − y 0 ) 2 ) f(x, y) = f(x_0, y_0) + A(x - x_0) + B(y - y_0) + o(\sqrt{(x - x_0)^2 + (y - y_0)^2}) f(x,y)=f(x0,y0)+A(x−x0)+B(y−y0)+o((x−x0)2+(y−y0)2 )

  • 其中 o ( ⋅ ) o(\cdot) o(⋅) 是高阶无穷小 ,意味着这个误差项随着 ( x , y ) → ( x 0 , y 0 ) (x, y) \to (x_0, y_0) (x,y)→(x0,y0) 比线性项还快地趋近于 0。
  • A = f x ( x 0 , y 0 ) , B = f y ( x 0 , y 0 ) A = f_x(x_0, y_0),\quad B = f_y(x_0, y_0) A=fx(x0,y0),B=fy(x0,y0),也就是说偏导数就是这个线性逼近的系数。

等价形式:

f ( x , y ) − f ( x 0 , y 0 ) = f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) + 高阶小量 f(x, y) - f(x_0, y_0) = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + \text{高阶小量} f(x,y)−f(x0,y0)=fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)+高阶小量


✅ 总结:可微的真正含义

层面 含义
几何角度 图像在该点附近是平滑的,有一个切平面可以很好地逼近函数图像
数学定义 函数增量可以被一阶线性函数逼近,误差为高阶无穷小
和偏导关系 偏导数存在且连续 ⇒ 可微,但反之不一定
相关推荐
杀生丸学AI2 天前
【平面重建】3D高斯平面:混合2D/3D光场重建(NeurIPS2025)
人工智能·平面·3d·大模型·aigc·高斯泼溅·空间智能
fengfuyao9853 天前
基于MATLAB实现任意平面太阳辐射量计算
算法·matlab·平面
zl_vslam5 天前
SLAM中的非线性优-3D图优化之地平面约束(十四)
算法·计算机视觉·平面·3d
科士威传动14 天前
滚珠导轨平行度与平面度的精准保障方法
人工智能·科技·平面·机器人·自动化·制造
Venus-ww15 天前
平面三轴机器人的阻尼最小二乘法(DLS)逆运动学求解
平面·机器人·最小二乘法
啊西:15 天前
SuperMap iClient3D for WebGL平面场景实现绘制任意面进行GPU空间查询
平面·3d·webgl
Ccjf酷儿16 天前
计算机网络 (郑烇) 5 网络层:控制平面
网络·计算机网络·平面
点云侠16 天前
基于选权迭代法的空间平面拟合
线性代数·算法·平面
Ccjf酷儿19 天前
计算机网络 (郑烇) 4 网络层:数据平面
网络·计算机网络·平面
徐行tag19 天前
平面运动模型下的特性及应用
数码相机·平面·slam