DeepSeek+LangChain:搭建一个基础的本地agent

找了一些LangChain的教程,很多都是用OpenAI作为例子的,但是魔法不稳定也不方便,为什么不试试方便快捷的DeepSeek呢?

1 所需准备

(1)下载LangChian

bash 复制代码
pip install langchain

先下载langchain包,后面可能还会用到一些包,遇到的时候再下载。 如果下载超时可以尝试使用清华镜像源。

bash 复制代码
pip install langchain -i https://pypi.tuna.tsinghua.edu.cn/simple

(2)准备好DeepSeek api 进入DeepSeek官网,点击右上角进入api开放平台。 点击左侧充值菜单,进入api充值页面,测试的时候可以先充个10块钱的试试看,后面不够再继续充值。 然后点击左侧API keys菜单,进入api key的管理页面,点击创建api key,创建好后记得复制保存,一旦创建好key就不可见啦。

2 agent搭建

接下来创建一个文件夹,在文件夹中创建以下文件。 (1) .env 将上面步骤中创建好的APIkey保存到这个文件中并保存

ini 复制代码
DEEPSEEK_API_KEY='{your_api_key}' #这里需要填入你自己创建的api key

(2)ds_chatbot.py 首先导入需要的包文件:

py 复制代码
from langchain_core.language_models import BaseLLM
from langchain_core.outputs import LLMResult
from typing import Optional, List, Any
import requests
import os
from dotenv import load_dotenv
# 对话部分内容
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory

然后读取环境变量中的api key:

py 复制代码
load_dotenv()

接下来继承langchain框架中的llm创建一个基于DeepSeek的类:

py 复制代码
class DeepSeekLLM(BaseLLM):
    api_key: str = os.getenv("DEEPSEEK_API_KEY", "")
    model: str = "deepseek-chat"
    temperature: float = 0.7
    max_tokens: int = 2048

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        if not self.api_key:
            raise ValueError("DEEPSEEK_API_KEY 未设置")

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> LLMResult:
        # 实现 _generate 方法(处理多个prompts)
        generations = []
        for prompt in prompts:
            text = self._invoke(prompt, stop=stop, **kwargs)
            generations.append([{"text": text}])
        return LLMResult(generations=generations)

    def _invoke(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> str:
        """实际调用DeepSeek API"""
        url = "https://api.deepseek.com/v1/chat/completions"
        headers = {"Authorization": f"Bearer {self.api_key}"}
        data = {
            "model": self.model,
            "messages": [{"role": "user", "content": prompt}],
            "temperature": self.temperature,
            "max_tokens": self.max_tokens,
        }
        response = requests.post(url, headers=headers, json=data)
        response.raise_for_status()
        return response.json()["choices"][0]["message"]["content"]

    @property
    def _llm_type(self) -> str:
        return "deepseek"

接下来调用我们创建好的类就可以啦:

py 复制代码
llm = DeepSeekLLM()
    memory = ConversationBufferMemory()
    conversation = ConversationChain(llm=llm, memory=memory)
    
    print("DeepSeek 聊天机器人已启动(输入'退出'结束对话)")
    while True:
        try:
            user_input = input("你: ")
            if user_input.lower() in ["退出", "exit", "quit"]:
                break
            response = conversation.predict(input=user_input)
            print(f"AI助手: {response}")
        except KeyboardInterrupt:
            print("\n对话结束")
            break
        except Exception as e:
            print(f"出错: {e}")

3 测试运行

完整的ds_chatbot.py文件内容:

py 复制代码
# 这是一个最小单位能够运行的agent,后续会逐渐完善

from langchain_core.language_models import BaseLLM
from langchain_core.outputs import LLMResult
from typing import Optional, List, Any
import requests
import os
from dotenv import load_dotenv
# 对话部分内容
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory

load_dotenv()

class DeepSeekLLM(BaseLLM):
    api_key: str = os.getenv("DEEPSEEK_API_KEY", "")
    model: str = "deepseek-chat"
    temperature: float = 0.7
    max_tokens: int = 2048

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        if not self.api_key:
            raise ValueError("DEEPSEEK_API_KEY 未设置")

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> LLMResult:
        # 实现 _generate 方法(处理多个prompts)
        generations = []
        for prompt in prompts:
            text = self._invoke(prompt, stop=stop, **kwargs)
            generations.append([{"text": text}])
        return LLMResult(generations=generations)

    def _invoke(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> str:
        """实际调用DeepSeek API"""
        url = "https://api.deepseek.com/v1/chat/completions"
        headers = {"Authorization": f"Bearer {self.api_key}"}
        data = {
            "model": self.model,
            "messages": [{"role": "user", "content": prompt}],
            "temperature": self.temperature,
            "max_tokens": self.max_tokens,
        }
        response = requests.post(url, headers=headers, json=data)
        response.raise_for_status()
        return response.json()["choices"][0]["message"]["content"]

    @property
    def _llm_type(self) -> str:
        return "deepseek"

# 使用示例
if __name__ == "__main__":
    '''
    llm = DeepSeekLLM()
    print("DeepSeek 聊天机器人已启动(输入'退出'结束对话)")
    while True:
        try:
            user_input = input("你: ")
            if user_input.lower() in ["退出", "exit", "quit"]:
                break
            response = llm.invoke(user_input)
            print(f"AI助手: {response}")
        except KeyboardInterrupt:
            print("\n对话结束")
            break
        except Exception as e:
            print(f"出错: {e}")
    '''

    llm = DeepSeekLLM()
    memory = ConversationBufferMemory()
    conversation = ConversationChain(llm=llm, memory=memory)
    
    print("DeepSeek 聊天机器人已启动(输入'退出'结束对话)")
    while True:
        try:
            user_input = input("你: ")
            if user_input.lower() in ["退出", "exit", "quit"]:
                break
            response = conversation.predict(input=user_input)
            print(f"AI助手: {response}")
        except KeyboardInterrupt:
            print("\n对话结束")
            break
        except Exception as e:
            print(f"出错: {e}")

接下来运行这个文件,我们就可以在ide的终端中和自己创建的聊天机器人进行对话了: 我们也可以去DeepSeek的api开放平台查看api的用量情况:

相关推荐
脚踏实地的大梦想家1 小时前
【LangChain】P7 对话记忆完全指南:从原理到实战(下)
数据库·langchain
超人在良家-阿启5 小时前
LangChain 之 DashScopeEmbeddings下的 embed_query和embed_documents的区别
langchain
许泽宇的技术分享16 小时前
重塑Excel的智慧边界:ExcelAgentTemplate架构深度解析与LLM集成最佳实践
langchain·excel插件开发
vv_5012 天前
Langchain+Neo4j+Agent 的结合案例-电商销售
人工智能·langchain·agent·neo4j
脚踏实地的大梦想家2 天前
【LangChain】P4 LangChain 多轮对话与上下文记忆深度解析
langchain
一语雨在生无可恋敲代码~2 天前
RAG Day05 混合检索
langchain
工藤学编程3 天前
零基础学AI大模型之LangChain聊天模型多案例实战
人工智能·langchain
西柚四季春3 天前
踩坑全记录:LangChain4j + Qdrant 从「id 为空」到「text 为 null」一次踩个够
langchain
Stream_Silver4 天前
《LangChain入门指南》学习笔记1:第1章 LangChain:开启大语言模型时代的钥匙
笔记·学习·langchain
工藤学编程4 天前
零基础学AI大模型之LangChain-PromptTemplate
人工智能·langchain