在深度学习中,卷积神经网络(CNNs)依赖标准卷积处理图像,但该操作对局部区域像素平等加权,未区分像素相对位置的语义贡献,限制了空间特征的精细化建模。为此,研究者提出加权卷积算子(Weighted Convolution Operator),通过引入空间密度函数,使网络能根据像素与中心位置的距离动态调整权重,强化关键区域特征提取,同时保持与现有 CNN 架构兼容且不增加可训练参数。
1.Weighted Convolution Operator原理
传统卷积对 3×3 核内所有像素同等处理,而实际图像中中心像素(如人脸五官、果实核心)通常承载更关键语义,边缘像素多为背景干扰。

加权卷积的改进:
给卷积核的每个位置加一个 "权重系数",这个系数由一个密度函数决定,用来告诉模型 "哪些位置的像素更重要"。比如,中心位置的系数设为 1(最重要),越靠近边缘的位置系数越小(比如 0.5、0.3),这样卷积计算时,中心像素的贡献就会被放大,边缘像素的影响被削弱。
2.写作思路
加权卷积以轻量化设计突破传统卷积的空间建模局限,为医学、遥感、工业、农业等领域的图像分析提供了更高效的特征提取方案。
1. 医学检测
在 CT/MRI 影像分析中,加权卷积通过密度函数增强病灶中心的纹理权重,抑制正常组织干扰,提升微小肿瘤检测精度。扩展至 3D 卷积后,可分析医学体数据的立体结构,辅助精准判断病变范围,兼容 U-Net 等网络,助力癌症早筛与手术规划。
2. 遥感检测
针对卫星、无人机图像的多尺度特征,加权卷积可强化作物、建筑等目标的中心区域权重,抑制阴影、植被等背景噪声。在农田监测中提升作物分类准确率,在城市检测中突出建筑物轮廓,结合轻量化模型高效处理高分辨率遥感数据,支持资源调查与环境监测。
3. 缺陷检测
在电路板焊点、金属表面检测中,加权卷积通过密度函数突出缺陷中心特征(如虚焊、裂纹),弱化基板均匀纹理或氧化膜干扰,兼容 ResNet 等架构,可无缝集成至生产线实时检测系统,通过参数调整适配多类型缺陷,减少光照、工件偏差导致的误检。
4. 农业检测
针对作物图像,加权卷积增强果实中心色彩或病斑边缘特征的权重,抑制枝叶背景影响,提升成熟度分类与病虫害识别精度。通过调整核大小与密度参数适应果实尺度变化,结合轻量化模型部署于无人机 / 机器人,实现田间生长状态实时监测与精准农业管理。
3. YOLO与 Weighted Convolution Operator的结合
加权卷积算子与 YOLO 结合,可通过密度函数增强目标区域特征权重、抑制背景干扰,提升复杂场景下的检测精度,尤其利好小目标与多目标检测;同时其参数零增长、计算开销低,能无缝嵌入 YOLO 架构,在保持实时性的基础上实现性能优化
4. Weighted Convolution Operator代码部分
加权卷积算子WConv 通过密度函数对卷积核位置加权,提升特征提取的空间敏感性_哔哩哔哩_bilibili
YOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili
代码获取: YOLOv11模型改进讲解,教您如何修改YOLOv11_哔哩哔哩_bilibili
5. Weighted Convolution Operator引入到YOLOv11中
第一: 将下面的核心代码复制到D:\model\yolov11\ultralytics\change_model路径下,如下图所示。

第二:在task.py中导入 包
第三:在YOLOv11\ultralytics\nn\tasks.py中的模型配置部分下面代码
第四:将模型配置文件复制到YOLOV11.YAMY文件中
第五:运行代码
上面是原模型,下面是改进模型