深度学习:PyTorch简介

本文目录:

一、什么是PyTorch

首先,pytorch是一个基于python的科学计算包。

pytorch安装:pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple

具体概念

1.PyTorch一个基于Python语言的深度学习框架,它将数据封装成张量(Tensor)来进行处理;

2.PyTorch提供了灵活且高效的工具,用于构建、训练和部署机器学习和深度学习模型;

3.PyTorch广泛应用于学术研究和工业界,特别是在计算机视觉、自然语言处理、强化学习等领域。

二、PyTorch特点

(一)类似于numpy的张量计算

PyTorch中的基本数据结构是张量(Tensor),它与NumPy中的数组类似,但PyTorch的张量具有GPU加速的能力(通过CUDA),这使得深度学习模型能够高效地在GPU上运行。

(二)自动微分系统

PyTorch提供了强大的自动微分 功能(autograd模块),能够自动计算模型中每个参数的梯度;

自动微分使得梯度计算过程变得简洁和高效,并且支持复杂的模型和动态计算图。

(三)深度学习库

PyTorch提供了一个名为torch.nn的子模块,用于构建神经网络。它包括了大量的预构建的层(如全连接层、卷积层、循环神经网络层等),损失函数(如交叉熵、均方误差等),以及优化算法(如SGD、Adam等);

torch.nn.Module是PyTorch中构建神经网络的基础类,用户可以通过继承该类来定义自己的神经网络架构。

(四)动态计算图

PyTorch使用动态计算图机制,允许在运行时构建和修改模型结构,具有更高的灵活性,适合于研究人员进行实验和模型调试;

(五)GPU加速

PyTorch提供对GPU的良好支持,能够在NVIDIA的CUDA设备上高效地进行计算。用户只需要将数据和模型转移到GPU上,PyTorch会自动优化计算过程;

通过简单的tensor.to(device)方法,可以轻松地将模型和数据从CPU转移到GPU或从一个GPU转移到另一个GPU。

(六)跨平台支持

PyTorch支持在多种硬件平台(如CPU、GPU、TPU等)上运行,并且支持不同操作系统(如Linux、Windows、macOS)以及分布式计算环境(如多GPU、分布式训练)。

三、PyTorch发展历史


相关推荐
算家计算2 分钟前
推理成本吞噬AI未来,云计算如何平衡速度与成本的难题?
人工智能·云计算·gpu
kalvin_y_liu27 分钟前
Lumi 具神智能机器人 SDK说明和ACT算法中的学习与推理
人工智能·ai·ros
阿里云大数据AI技术27 分钟前
云栖实录 | 阿里云助力金山办公打造智能搜索新标杆:WPS云文档搜索技术全面升级
人工智能·elasticsearch·搜索引擎
koo3641 小时前
李宏毅机器学习笔记33
人工智能·笔记·机器学习
无风听海1 小时前
神经网络之密集的词向量如何能够代表稀疏的词向量
人工智能·神经网络·机器学习
文火冰糖的硅基工坊1 小时前
[人工智能-大模型-74]:模型层技术 - 模型训练六大步:③神经网络,预测输出:基本功能与对应的基本组成函数
人工智能·深度学习·神经网络
mwq301231 小时前
RLHF-奖励模型RM 的“引擎”:Pairwise Loss 梯度计算详解
人工智能
亚远景aspice1 小时前
亚远景热烈祝贺保隆科技通过ASPICE CL2评估
大数据·人工智能·物联网
苍何1 小时前
这款国产智能编码工具,竟然登顶全球TOP3!
人工智能
许泽宇的技术分享1 小时前
提示词工程完全指南:从入门到精通的AI对话艺术 —— 用一句话驯服千亿参数的“大脑“
人工智能