深度学习:PyTorch简介

本文目录:

一、什么是PyTorch

首先,pytorch是一个基于python的科学计算包。

pytorch安装:pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple

具体概念

1.PyTorch一个基于Python语言的深度学习框架,它将数据封装成张量(Tensor)来进行处理;

2.PyTorch提供了灵活且高效的工具,用于构建、训练和部署机器学习和深度学习模型;

3.PyTorch广泛应用于学术研究和工业界,特别是在计算机视觉、自然语言处理、强化学习等领域。

二、PyTorch特点

(一)类似于numpy的张量计算

PyTorch中的基本数据结构是张量(Tensor),它与NumPy中的数组类似,但PyTorch的张量具有GPU加速的能力(通过CUDA),这使得深度学习模型能够高效地在GPU上运行。

(二)自动微分系统

PyTorch提供了强大的自动微分 功能(autograd模块),能够自动计算模型中每个参数的梯度;

自动微分使得梯度计算过程变得简洁和高效,并且支持复杂的模型和动态计算图。

(三)深度学习库

PyTorch提供了一个名为torch.nn的子模块,用于构建神经网络。它包括了大量的预构建的层(如全连接层、卷积层、循环神经网络层等),损失函数(如交叉熵、均方误差等),以及优化算法(如SGD、Adam等);

torch.nn.Module是PyTorch中构建神经网络的基础类,用户可以通过继承该类来定义自己的神经网络架构。

(四)动态计算图

PyTorch使用动态计算图机制,允许在运行时构建和修改模型结构,具有更高的灵活性,适合于研究人员进行实验和模型调试;

(五)GPU加速

PyTorch提供对GPU的良好支持,能够在NVIDIA的CUDA设备上高效地进行计算。用户只需要将数据和模型转移到GPU上,PyTorch会自动优化计算过程;

通过简单的tensor.to(device)方法,可以轻松地将模型和数据从CPU转移到GPU或从一个GPU转移到另一个GPU。

(六)跨平台支持

PyTorch支持在多种硬件平台(如CPU、GPU、TPU等)上运行,并且支持不同操作系统(如Linux、Windows、macOS)以及分布式计算环境(如多GPU、分布式训练)。

三、PyTorch发展历史


相关推荐
Howie Zphile几秒前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5773 分钟前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥5 分钟前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7255 分钟前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h23 分钟前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切23 分钟前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
数据与后端架构提升之路25 分钟前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿28 分钟前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue6123123132 分钟前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
一切尽在,你来40 分钟前
第二章 预告内容
人工智能·langchain·ai编程