深度学习:PyTorch简介

本文目录:

一、什么是PyTorch

首先,pytorch是一个基于python的科学计算包。

pytorch安装:pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple

具体概念

1.PyTorch一个基于Python语言的深度学习框架,它将数据封装成张量(Tensor)来进行处理;

2.PyTorch提供了灵活且高效的工具,用于构建、训练和部署机器学习和深度学习模型;

3.PyTorch广泛应用于学术研究和工业界,特别是在计算机视觉、自然语言处理、强化学习等领域。

二、PyTorch特点

(一)类似于numpy的张量计算

PyTorch中的基本数据结构是张量(Tensor),它与NumPy中的数组类似,但PyTorch的张量具有GPU加速的能力(通过CUDA),这使得深度学习模型能够高效地在GPU上运行。

(二)自动微分系统

PyTorch提供了强大的自动微分 功能(autograd模块),能够自动计算模型中每个参数的梯度;

自动微分使得梯度计算过程变得简洁和高效,并且支持复杂的模型和动态计算图。

(三)深度学习库

PyTorch提供了一个名为torch.nn的子模块,用于构建神经网络。它包括了大量的预构建的层(如全连接层、卷积层、循环神经网络层等),损失函数(如交叉熵、均方误差等),以及优化算法(如SGD、Adam等);

torch.nn.Module是PyTorch中构建神经网络的基础类,用户可以通过继承该类来定义自己的神经网络架构。

(四)动态计算图

PyTorch使用动态计算图机制,允许在运行时构建和修改模型结构,具有更高的灵活性,适合于研究人员进行实验和模型调试;

(五)GPU加速

PyTorch提供对GPU的良好支持,能够在NVIDIA的CUDA设备上高效地进行计算。用户只需要将数据和模型转移到GPU上,PyTorch会自动优化计算过程;

通过简单的tensor.to(device)方法,可以轻松地将模型和数据从CPU转移到GPU或从一个GPU转移到另一个GPU。

(六)跨平台支持

PyTorch支持在多种硬件平台(如CPU、GPU、TPU等)上运行,并且支持不同操作系统(如Linux、Windows、macOS)以及分布式计算环境(如多GPU、分布式训练)。

三、PyTorch发展历史


相关推荐
之歆5 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派5 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词5 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3015 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578025 小时前
人工智能发展历史
人工智能
强盛小灵通专卖员6 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder6 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me6 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者6 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
阿部多瑞 ABU6 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作