RAG 技术详解:结合检索与生成的智能问答新范式

一、什么是 RAG?

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合了 信息检索(Retrieval)自然语言生成(Generation) 的问答架构,旨在提升大语言模型的事实性、可追溯性与最新性。

传统的大语言模型(如 GPT 系列)虽然拥有强大的生成能力,但存在两个明显的限制:

  • 知识封闭性:训练完成后的知识无法动态更新。
  • 幻觉问题(Hallucination):模型会生成看似合理却不真实的内容。

RAG 的提出正是为了解决这些问题。


二、RAG 的流程详解

RAG 的整体流程如下:

1. 用户提问(User → Query)

用户提出一个查询(Query),系统开始处理请求。

2. 查询向量化并检索(Vectorize & Search)

查询被转换为向量表示,并在 向量数据库(Vector Database) 中进行相似度检索,以寻找与问题相关的文档内容。

3. 文档索引与预处理(Indexing)

系统预先将各种文档(如网页、PDF、Word 等)进行以下处理:

  • 文档加载:将外部文档输入系统;
  • 文档切分(Chunking):将大文档切分为更小的文本块(如段落、句子);
  • 向量化存储:使用嵌入模型将每个文本块转为向量,并存入向量数据库中(如 FAISS、Milvus、Qdrant)。
4. 相关上下文检索(Retrieve Relevant Contexts)

系统根据查询从向量数据库中检索出最相关的文档片段,作为补充上下文信息(Relevant Contexts)。

5. 增强输入并生成(Augment + Generate)

将用户的原始问题与检索到的文档拼接为提示词(Prompt),一同输入到大语言模型(LLM)中生成最终回答。

复制代码
Prompt:
根据以下内容回答问题:
[相关内容1]
[相关内容2]
[相关内容3]
用户的问题是:GPT-4 和 GPT-3.5 有什么区别?
6. 返回响应(Response)

大语言模型(如 GPT、LLaMA、ChatGLM 等)在增强上下文的基础上生成回答,并将其返回给用户。

三、RAG 系统结构图

下面是 RAG 系统的结构图示意:


四、RAG 的核心模块组成

模块名称 功能描述
向量化模块 将文档片段与用户查询向量化,便于在向量空间中计算相似度。
文档加载与切分模块 加载原始文档,并按段落或句子切分成适合处理的文档块(Document Chunks)。
向量数据库 存储文档片段的向量表示,支持高效相似度检索(如 FAISS、Milvus 等)。
检索模块 根据用户 Query 检索出相关的文档片段,返回给生成模块使用。
大语言模型模块 接收查询与上下文,基于语义理解和知识生成最终回答。

更多阅读:
一文彻底搞懂大模型 - RAG(检索、增强、生成)

相关推荐
aigcapi13 小时前
RAG 系统的黑盒测试:从算法对齐视角解析 GEO 优化的技术指标体系
大数据·人工智能·算法
上进小菜猪14 小时前
基于深度学习的河道垃圾检测系统设计(YOLOv8)
人工智能
上天夭14 小时前
模型训练篇
人工智能·深度学习·机器学习
小徐Chao努力15 小时前
【Langchain4j-Java AI开发】09-Agent智能体工作流
java·开发语言·人工智能
Blossom.11815 小时前
AI编译器实战:从零手写算子融合与自动调度系统
人工智能·python·深度学习·机器学习·flask·transformer·tornado
Coder_Boy_15 小时前
SpringAI与LangChain4j的智能应用-(理论篇2)
人工智能·spring boot·langchain·springai
却道天凉_好个秋15 小时前
OpenCV(四十八):图像查找
人工智能·opencv·计算机视觉
Coder_Boy_15 小时前
SpringAI与LangChain4j的智能应用-(理论篇3)
java·人工智能·spring boot·langchain
GetcharZp15 小时前
工地“火眼金睛”!手把手带你用 YOLO11 实现安全帽佩戴检测
人工智能·计算机视觉
Codebee15 小时前
Ooder A2UI架构白皮书
人工智能·响应式编程