Spark 性能调优七步法

本文档综合了 Spark 工程中常见的性能瓶颈和优化技巧,分为七大调优方向,适用于 PySpark 和 Scala Spark 场景,包括资源配置、并行度、缓存、垃圾回收、UDF 性能、Shuffle 优化和作业结构管控等。


一、资源配置调优

目标

合理分配 executor 和 JVM 内存,避免 OOM 和 GC 过高导致性能下降或 executor 被 YARN Kill。

优化策略

参数 推荐配置 说明
--executor-memory 8G ~ 20G JVM 堆内存,过大易导致 Full GC
--executor-cores 2 ~ 5 避免超过带条数导致 GC
spark.executor.memoryOverhead 至少 2G(PySpark 推荐为 4G 或更高) off-heap 内存,包括 Python UDF/缓冲区/数据缓存
--num-executors 根据总核数计算 = 总CPU核数 / 每executor核数

示例

复制代码
--executor-memory 16G \
--executor-cores 4 \
--conf spark.executor.memoryOverhead=4G \
--num-executors 50

二、数据分区和并行度

目标

避免 task 单次处理数据过多或过少,导致 GC 或分布失衡,强化应用的并行能力。

优化策略

  • 初始读取后使用 repartition(n) 指定分区

  • 调整 spark.sql.shuffle.partitions(默认 200)

  • 结果写出前使用 coalesce(n) 减少小文件

    df = df.repartition(200)
    spark.conf.set("spark.sql.shuffle.partitions", "400")
    df.coalesce(100).write.parquet("...")


三、缓存优化

目标

提高数据重复读取时性能,避免多次进程计算。

优化策略

  • 使用 persist() 替代 cache()

  • 指定缓存级别:MEMORY_AND_DISK_SER 节省内存

  • 后续不使用时应该 unpersist()

    from pyspark import StorageLevel
    df.persist(StorageLevel.MEMORY_AND_DISK_SER)
    ...
    df.unpersist()


四、垃圾回收 (GC) 优化

目标

降低 GC 时间,避免 JVM 停顿,提高作业稳定性。

优化策略

  • JVM 堆内存 <= 20G

  • 推荐使用 G1GC

  • 启用 GC 日志分析

    --conf spark.executor.extraJavaOptions="-XX:+UseG1GC -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps"


五、UDF 代码和逻辑优化

目标

减少 JVM 和 Python 之间的序列化或处理费,提高运行效率。

优化策略

  • 优先考虑 Spark SQL 表达式或 built-in 函数

  • 用 pandas UDF 替换 Python UDF

  • 避免 collect()/groupByKey()

    @pandas_udf(StringType(), functionType="PANDAS_UDF")
    def clean(col: pd.Series) -> pd.Series:
    return col.str.lower().str.strip()

    df = df.withColumn("cleaned", clean("name"))


六、Shuffle 性能优化

目标

降低 shuffle 输入输出 IO 和缓冲压力,避免倦缓/磁盘 spill,提高性能。

优化策略

  • 避免 groupByKey,优先 reduceByKey 或 aggregateByKey

  • 启用 shuffle 压缩、spill 压缩

  • 适应场景使用 Broadcast Join / Sort-Merge Join

  • 解决数据倾斜:Salting 或 AQE

示例配置

复制代码
--conf spark.shuffle.compress=true \
--conf spark.shuffle.spill.compress=true \
--conf spark.shuffle.file.buffer=64k \
--conf spark.sql.autoBroadcastJoinThreshold=10MB \
--conf spark.sql.adaptive.enabled=true

七、作业结构和任务管理

目标

控制 DAG 深度,避免特殊大 task 倾斜,提升较均衡执行效率。

优化策略

  • 较复杂的 DAG 作业分时 checkpoint/cache

  • 推荐使用 AQE 展现时动性分区和 join 选择

  • 避免大幅 broadcast join (大于 10MB)

    spark.conf.set("spark.sql.adaptive.enabled", "true")


总结:Spark 调优七步法(记忆词:资-分-存-收-码-洗-控)

分类 内容
1. 资源配置 内存/核数/超越内存配置
2. 分区并行度 repartition / shuffle 分区
3. 数据缓存 persist 级别 / 释放时机
4. GC 优化 G1GC / JVM 堆 / GC 日志
5. UDF 逻辑 pandas UDF / Spark SQL 替代
6. Shuffle 优化 join 类型 / 倾斜解决方案
7. 作业控制 AQE / checkpoint / 分步执行

相关推荐
星环科技TDH社区版39 分钟前
星环科技产品可存储的表格式功能介绍以及创建示例
大数据·数据库
百度Geek说1 小时前
百度垂搜数据管理系统弹性调度优化实践
大数据·搜索引擎
bug菌1 小时前
CAP定理真的是死结?业务系统到底该怎么取舍!
分布式·后端·架构
白鲸开源3 小时前
DSIP-91提案解读:简化工作流调试和发布的方案,等你来探讨!
大数据
龘龍龙5 小时前
RabbitMQ-延时队列
分布式·rabbitmq
C++ 老炮儿的技术栈6 小时前
VSCode -配置为中文界面
大数据·c语言·c++·ide·vscode·算法·编辑器
白鲸开源6 小时前
SQL Server CDC 机制全解:如何用 SeaTunnel 构建高效实时数据同步方案
大数据
小巫程序Demo日记6 小时前
SparkUI依赖问题解决方法
java·spark
小巫程序Demo日记6 小时前
Spark简介脑图
大数据·笔记·spark
武子康6 小时前
大数据-14-Hive HQL 表连接查询 HDFS导入导出 逻辑运算 函数查询 全表查询
大数据·后端·apache hive