Python学习Day34

学习来源:@浙大疏锦行

优化耗时:

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

import time

import matplotlib.pyplot as plt

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(f"使用设备: {device}")

iris = load_iris()

X = iris.data

y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train).to(device)

y_train = torch.LongTensor(y_train).to(device)

X_test = torch.FloatTensor(X_test).to(device)

y_test = torch.LongTensor(y_test).to(device)

class MLP(nn.Module):

def init(self):

super(MLP, self).init()

self.fc1 = nn.Linear(4, 10)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

return out

model = MLP().to(device)

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.01)

num_epochs = 20000

losses = []

start_time = time.time()

for epoch in range(num_epochs):

outputs = model(X_train)

loss = criterion(outputs, y_train)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if (epoch + 1) % 200 == 0:

losses.append(loss.item())

print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

if (epoch + 1) % 100 == 0:

print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

time_all = time.time() - start_time

print(f'Training time: {time_all:.2f} seconds')

plt.plot(range(len(losses)), losses)

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training Loss over Epochs')​​​​​​​​​​​@​

plt.show()

相关推荐
xiaoqi9766336901 分钟前
免费文字转语音助手 python+edge_tts+FFMPEG
python·edge·ffmpeg
APIshop4 分钟前
用“爬虫”思路做淘宝 API 接口测试:从申请 Key 到 Python 自动化脚本
爬虫·python·自动化
子午8 分钟前
【农作物谷物识别系统】Python+TensorFlow+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
红蒲公英10 分钟前
( 教学 )Agent 构建 Prompt(提示词)3. StructuredOutputParser (结构化输出)
人工智能·python·prompt
谷粒.11 分钟前
API测试全解析:从基础到性能压测
java·运维·网络·人工智能·python·测试工具·自动化
月亮!12 分钟前
敏捷开发中测试左移的5个关键实践
java·人工智能·python·selenium·测试工具·测试用例·敏捷流程
___波子 Pro Max.13 分钟前
VS Code配置python.analysis.extraPaths作用
python
专业开发者14 分钟前
MTK GNSS 可见性控制指南
开发语言·python·物联网
码界奇点15 分钟前
基于Django与Ansible的智能运维管理系统设计与实现
运维·python·django·毕业设计·ansible·源代码管理
卿雪19 分钟前
MySQL【索引】:索引的概念与分类
java·数据库·python·mysql·adb·golang