Python学习Day34

学习来源:@浙大疏锦行

优化耗时:

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

import time

import matplotlib.pyplot as plt

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(f"使用设备: {device}")

iris = load_iris()

X = iris.data

y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train).to(device)

y_train = torch.LongTensor(y_train).to(device)

X_test = torch.FloatTensor(X_test).to(device)

y_test = torch.LongTensor(y_test).to(device)

class MLP(nn.Module):

def init(self):

super(MLP, self).init()

self.fc1 = nn.Linear(4, 10)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

return out

model = MLP().to(device)

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.01)

num_epochs = 20000

losses = []

start_time = time.time()

for epoch in range(num_epochs):

outputs = model(X_train)

loss = criterion(outputs, y_train)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if (epoch + 1) % 200 == 0:

losses.append(loss.item())

print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

if (epoch + 1) % 100 == 0:

print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

time_all = time.time() - start_time

print(f'Training time: {time_all:.2f} seconds')

plt.plot(range(len(losses)), losses)

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training Loss over Epochs')​​​​​​​​​​​@​

plt.show()

相关推荐
沈浩(种子思维作者)2 小时前
系统要活起来就必须开放包容去中心化
人工智能·python·flask·量子计算
2301_790300962 小时前
Python数据库操作:SQLAlchemy ORM指南
jvm·数据库·python
m0_736919102 小时前
用Pandas处理时间序列数据(Time Series)
jvm·数据库·python
getapi2 小时前
实时音视频传输与屏幕共享(投屏)
python
java干货3 小时前
为什么 “File 10“ 排在 “File 2“ 前面?解决文件名排序的终极算法:自然排序
开发语言·python·算法
机器懒得学习3 小时前
智能股票分析系统
python·深度学习·金融
毕设源码-郭学长3 小时前
【开题答辩全过程】以 基于python的二手房数据分析与可视化为例,包含答辩的问题和答案
开发语言·python·数据分析
SR_shuiyunjian3 小时前
Python第三次作业
python
vx_biyesheji00013 小时前
豆瓣电影推荐系统 | Python Django 协同过滤 Echarts可视化 深度学习 大数据 毕业设计源码
大数据·爬虫·python·深度学习·django·毕业设计·echarts
鸽芷咕3 小时前
DrissionPage 成 CANN 仓库爆款自动化工具:背后原因何在?
运维·python·自动化·cann