Python学习Day34

学习来源:@浙大疏锦行

优化耗时:

import torch

import torch.nn as nn

import torch.optim as optim

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

import time

import matplotlib.pyplot as plt

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

print(f"使用设备: {device}")

iris = load_iris()

X = iris.data

y = iris.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

scaler = MinMaxScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

X_train = torch.FloatTensor(X_train).to(device)

y_train = torch.LongTensor(y_train).to(device)

X_test = torch.FloatTensor(X_test).to(device)

y_test = torch.LongTensor(y_test).to(device)

class MLP(nn.Module):

def init(self):

super(MLP, self).init()

self.fc1 = nn.Linear(4, 10)

self.relu = nn.ReLU()

self.fc2 = nn.Linear(10, 3)

def forward(self, x):

out = self.fc1(x)

out = self.relu(out)

out = self.fc2(out)

return out

model = MLP().to(device)

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.01)

num_epochs = 20000

losses = []

start_time = time.time()

for epoch in range(num_epochs):

outputs = model(X_train)

loss = criterion(outputs, y_train)

optimizer.zero_grad()

loss.backward()

optimizer.step()

if (epoch + 1) % 200 == 0:

losses.append(loss.item())

print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

if (epoch + 1) % 100 == 0:

print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

time_all = time.time() - start_time

print(f'Training time: {time_all:.2f} seconds')

plt.plot(range(len(losses)), losses)

plt.xlabel('Epoch')

plt.ylabel('Loss')

plt.title('Training Loss over Epochs')​​​​​​​​​​​@​

plt.show()

相关推荐
追光天使3 小时前
Python 连接数据库并遍历数据
python
BBB努力学习程序设计3 小时前
Python迭代器与生成器深度解析:懒加载的艺术
python·pycharm
dazzle3 小时前
OpenCV基础教学(二):图像的灰度化处理
python·opencv·计算机视觉
代码洲学长3 小时前
RNN模型01
人工智能·python·rnn·自然语言处理·gru·lstm
饕餮争锋3 小时前
REPL简介
python
执笔论英雄3 小时前
【RL]大模型训练1F1B执行过程
python
Amelia1111113 小时前
day35
python
superman超哥4 小时前
仓颉Actor模型的实现机制深度解析
开发语言·后端·python·c#·仓颉
superman超哥4 小时前
仓颉内存管理深度探索:引用计数的实现原理与实战
c语言·开发语言·c++·python·仓颉
zhuzihuaile4 小时前
Langchain-Chatchat + Ollama + QWen3 + 搭建知识库 + AI-Win
人工智能·python·ai·langchain