作业:
1.好好理解下resnet18的模型结构
2.尝试对vgg16+cbam进行微调策略
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torch.utils.data import DataLoader
import time
import copy
# Check for CUDA availability
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# --- CBAM Module Implementation ---
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False),
nn.ReLU(),
nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x_cat = torch.cat([avg_out, max_out], dim=1)
x_att = self.conv1(x_cat)
return self.sigmoid(x_att)
class CBAM(nn.Module):
def __init__(self, in_planes, ratio=16, kernel_size=7):
super(CBAM, self).__init__()
self.ca = ChannelAttention(in_planes, ratio)
self.sa = SpatialAttention(kernel_size)
def forward(self, x):
x = x * self.ca(x) # Apply channel attention
x = x * self.sa(x) # Apply spatial attention
return x
# --- VGG16 with CBAM Model ---
class VGG16_CBAM(nn.Module):
def __init__(self, num_classes=10, pretrained=True):
super(VGG16_CBAM, self).__init__()
vgg_base = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1 if pretrained else None)
self.features = vgg_base.features
# CBAM module after feature extraction
# VGG16 features output 512 channels
self.cbam = CBAM(in_planes=512)
# Adaptive average pooling to get a fixed size output (e.g., 7x7 for original VGG classifier, or 1x1)
# VGG's original avgpool is AdaptiveAvgPool2d(output_size=(7, 7))
# If we keep this, input to classifier is 512 * 7 * 7
self.avgpool = vgg_base.avgpool
# Original VGG classifier:
# (0): Linear(in_features=25088, out_features=4096, bias=True)
# (1): ReLU(inplace=True)
# (2): Dropout(p=0.5, inplace=False)
# (3): Linear(in_features=4096, out_features=4096, bias=True)
# (4): ReLU(inplace=True)
# (5): Dropout(p=0.5, inplace=False)
# (6): Linear(in_features=4096, out_features=1000, bias=True)
# Modify the last layer of the classifier for the new number of classes
# For CIFAR-10, num_classes = 10
# The input to the classifier is 512 * 7 * 7 = 25088
# Or if we change avgpool to nn.AdaptiveAvgPool2d((1,1)), then input is 512
# Option 1: Keep original avgpool, input to classifier is 25088
num_ftrs = vgg_base.classifier[0].in_features # Should be 25088
# Option 2: Adapt for smaller feature map (e.g. 1x1 output from avgpool)
# self.avgpool = nn.AdaptiveAvgPool2d((1,1)) # Output 512x1x1
# num_ftrs = 512
self.classifier = nn.Sequential(
nn.Linear(num_ftrs, 4096),
nn.ReLU(True),
nn.Dropout(p=0.5),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(p=0.5),
nn.Linear(4096, num_classes)
)
# Initialize weights of the new classifier (optional, often helps)
for m in self.classifier.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.features(x)
x = self.cbam(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# --- Data Preparation ---
# CIFAR-10 specific transforms
# VGG expects 224x224 images
transform_train = transforms.Compose([
transforms.Resize(256),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), # CIFAR-10 stats
])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = DataLoader(trainset, batch_size=32, shuffle=True, num_workers=4, pin_memory=True) # Adjust batch_size based on GPU VRAM
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = DataLoader(testset, batch_size=64, shuffle=False, num_workers=4, pin_memory=True)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
num_classes = len(classes)
# --- Training and Evaluation Functions ---
def train_model_epochs(model, criterion, optimizer, dataloader, num_epochs=10, accumulation_steps=1):
model.train()
scaler = torch.cuda.amp.GradScaler(enabled=torch.cuda.is_available()) # For mixed precision
for epoch in range(num_epochs):
running_loss = 0.0
running_corrects = 0
total_samples = 0
optimizer.zero_grad() # Zero out gradients before starting accumulation for an effective batch
for i, (inputs, labels) in enumerate(dataloader):
inputs, labels = inputs.to(device), labels.to(device)
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()): # Mixed precision context
outputs = model(inputs)
loss = criterion(outputs, labels)
loss = loss / accumulation_steps # Scale loss
scaler.scale(loss).backward() # Scale loss and call backward
if (i + 1) % accumulation_steps == 0 or (i + 1) == len(dataloader):
scaler.step(optimizer) # Perform optimizer step
scaler.update() # Update scaler
optimizer.zero_grad() # Zero out gradients for the next effective batch
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0) * accumulation_steps # Unscale loss for logging
running_corrects += torch.sum(preds == labels.data)
total_samples += inputs.size(0)
if (i + 1) % 100 == 0: # Log every 100 mini-batches
print(f'Epoch [{epoch+1}/{num_epochs}], Batch [{i+1}/{len(dataloader)}], Loss: {loss.item()*accumulation_steps:.4f}')
epoch_loss = running_loss / total_samples
epoch_acc = running_corrects.double() / total_samples
print(f'Epoch {epoch+1}/{num_epochs} - Train Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}')
return model
def evaluate_model(model, criterion, dataloader):
model.eval()
running_loss = 0.0
running_corrects = 0
total_samples = 0
with torch.no_grad():
for inputs, labels in dataloader:
inputs, labels = inputs.to(device), labels.to(device)
with torch.cuda.amp.autocast(enabled=torch.cuda.is_available()):
outputs = model(inputs)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
total_samples += inputs.size(0)
epoch_loss = running_loss / total_samples
epoch_acc = running_corrects.double() / total_samples
print(f'Test Loss: {epoch_loss:.4f}, Acc: {epoch_acc:.4f}\n')
return epoch_acc
# --- Fine-tuning Strategy Implementation ---
model_vgg_cbam = VGG16_CBAM(num_classes=num_classes, pretrained=True).to(device)
criterion = nn.CrossEntropyLoss()
accumulation_steps = 2 # Simulate larger batch size: 32*2 = 64 effective
# **Phase 1: Train only the CBAM and the new classifier**
print("--- Phase 1: Training CBAM and Classifier ---")
# Freeze all layers in features
for param in model_vgg_cbam.features.parameters():
param.requires_grad = False
# Ensure CBAM and classifier parameters are trainable
for param in model_vgg_cbam.cbam.parameters():
param.requires_grad = True
for param in model_vgg_cbam.classifier.parameters():
param.requires_grad = True
# Collect parameters to optimize for phase 1
params_to_optimize_phase1 = []
for name, param in model_vgg_cbam.named_parameters():
if param.requires_grad:
params_to_optimize_phase1.append(param)
print(f"Phase 1 optimizing: {name}")
optimizer_phase1 = optim.AdamW(params_to_optimize_phase1, lr=1e-3, weight_decay=1e-4)
# scheduler_phase1 = optim.lr_scheduler.StepLR(optimizer_phase1, step_size=5, gamma=0.1) # Optional scheduler
# Reduced epochs for quicker demonstration, increase for better results
epochs_phase1 = 10 # e.g., 10-15 epochs
model_vgg_cbam = train_model_epochs(model_vgg_cbam, criterion, optimizer_phase1, trainloader, num_epochs=epochs_phase1, accumulation_steps=accumulation_steps)
evaluate_model(model_vgg_cbam, criterion, testloader)
# **Phase 2: Unfreeze some later layers of the backbone (e.g., last VGG block) and train with a smaller LR**
print("\n--- Phase 2: Fine-tuning later backbone layers, CBAM, and Classifier ---")
# VGG16 features layers: total 31 layers (conv, relu, pool)
# Last block (conv5_1, relu, conv5_2, relu, conv5_3, relu, pool5) starts around index 24
# Unfreeze layers from index 24 onwards (last conv block)
# Note: VGG feature blocks end at indices: 4 (block1), 9 (block2), 16 (block3), 23 (block4), 30 (block5)
# Let's unfreeze block 5 (layers 24-30) and block 4 (layers 17-23)
unfreeze_from_layer_idx = 17 # Start of block4
for i, child in enumerate(model_vgg_cbam.features.children()):
if i >= unfreeze_from_layer_idx:
print(f"Phase 2 Unfreezing feature layer: {i} - {type(child)}")
for param in child.parameters():
param.requires_grad = True
# else: # Keep earlier layers frozen
# for param in child.parameters():
# param.requires_grad = False
# This is already done from phase 1, but good to be explicit if starting from scratch
# Differential learning rates
# Backbone layers (newly unfrozen) get a smaller LR
# CBAM and classifier get a slightly larger LR (or same as backbone if preferred)
lr_backbone_phase2 = 1e-5
lr_head_phase2 = 5e-5 # CBAM and classifier
params_group_phase2 = [
{'params': [], 'lr': lr_backbone_phase2, 'name': 'fine_tune_features'}, # For later backbone layers
{'params': model_vgg_cbam.cbam.parameters(), 'lr': lr_head_phase2, 'name': 'cbam'},
{'params': model_vgg_cbam.classifier.parameters(), 'lr': lr_head_phase2, 'name': 'classifier'}
]
# Add only newly unfrozen feature layers to the optimizer group
for i, child in enumerate(model_vgg_cbam.features.children()):
if i >= unfreeze_from_layer_idx:
params_group_phase2[0]['params'].extend(list(child.parameters()))
print(f"Phase 2 optimizing feature layer: {i} with lr {lr_backbone_phase2}")
# Ensure early backbone layers are NOT in optimizer if they are frozen (param.requires_grad == False)
# The AdamW constructor below will only consider params with requires_grad=True from the list
optimizer_phase2 = optim.AdamW(
[p for p_group in params_group_phase2 for p in p_group['params'] if p.requires_grad],
lr=lr_head_phase2 # Default LR, overridden by group LRs
)
# More explicit group definition:
optimizer_phase2 = optim.AdamW([
{'params': [p for p in params_group_phase2[0]['params'] if p.requires_grad], 'lr': lr_backbone_phase2},
{'params': [p for p in params_group_phase2[1]['params'] if p.requires_grad], 'lr': lr_head_phase2},
{'params': [p for p in params_group_phase2[2]['params'] if p.requires_grad], 'lr': lr_head_phase2}
], weight_decay=1e-4)
epochs_phase2 = 15 # e.g., 15-20 epochs
model_vgg_cbam = train_model_epochs(model_vgg_cbam, criterion, optimizer_phase2, trainloader, num_epochs=epochs_phase2, accumulation_steps=accumulation_steps)
evaluate_model(model_vgg_cbam, criterion, testloader)
# **Phase 3: Unfreeze all layers and train with a very small learning rate**
print("\n--- Phase 3: Fine-tuning all layers with very small LR ---")
for param in model_vgg_cbam.features.parameters():
param.requires_grad = True # Unfreeze all feature layers
# Single very small learning rate for all parameters
lr_phase3 = 2e-6
# Or differential (earlier layers even smaller)
params_group_phase3 = [
{'params': list(model_vgg_cbam.features[:unfreeze_from_layer_idx].parameters()), 'lr': lr_phase3 * 0.1, 'name':'early_features'}, # Earlier backbone layers
{'params': list(model_vgg_cbam.features[unfreeze_from_layer_idx:].parameters()), 'lr': lr_phase3, 'name':'later_features'}, # Later backbone layers
{'params': model_vgg_cbam.cbam.parameters(), 'lr': lr_phase3 * 2, 'name':'cbam'}, # CBAM slightly higher
{'params': model_vgg_cbam.classifier.parameters(), 'lr': lr_phase3 * 2, 'name':'classifier'} # Classifier slightly higher
]
optimizer_phase3 = optim.AdamW(params_group_phase3, weight_decay=1e-5) # default LR is not used here
# optimizer_phase3 = optim.AdamW(model_vgg_cbam.parameters(), lr=lr_phase3, weight_decay=1e-5) # Simpler: one LR for all
epochs_phase3 = 15 # e.g., 15-20 epochs
model_vgg_cbam = train_model_epochs(model_vgg_cbam, criterion, optimizer_phase3, trainloader, num_epochs=epochs_phase3, accumulation_steps=accumulation_steps)
evaluate_model(model_vgg_cbam, criterion, testloader)
print("Fine-tuning complete!")
# Save the final model (optional)
# torch.save(model_vgg_cbam.state_dict(), 'vgg16_cbam_cifar10_final.pth')