pyspark 要处理数据,没有,那就伪造数据 faker 真是个好东西
from faker import Faker
import pandas as pd
gender = ["None","Man","Woman"]
fake = Faker()
names = [(fake.first_name(),fake.last_name(),fake.date_of_birth(),fake.random_int(1,99),gender[fake.random_int(1,2)]) for _ in range(1000)]
pd.DataFrame(names, columns=["first_name","last_name","birthday","age","gender"]).to_csv("fake_names.csv", index=False)
from pyspark.sql import SparkSession
#字符串处理函数
spark = SparkSession.builder.appName('example').getOrCreate()
df =spark.read.csv("fake_names.csv",header=True,inferSchema=True)
# df.show(3)
1、拼接字符串 concat() concat_ws() format_string()
from pyspark.sql.functions import concat,concat_ws,format_string
df.select("first_name","last_name","age",
concat(df["first_name"],df['last_name']).alias("concat_result"),
concat_ws('#',df["first_name"],df['last_name']).alias("concat_ws_result"),
format_string("姓%s名%s年龄%d",df["first_name"],df['last_name'],df['age']).alias("format_string_result")
).show(5)
2、字符串的长度和转换大小写 length() lower() upper()
from pyspark.sql.functions import length,lower,upper
df.select(
"first_name",
length(df["first_name"]).alias("length_result"),
lower(df["first_name"]).alias("lower_result"),
upper(df["first_name"]).alias("upper_result")
).show(5)
3、添加常量值到新的列中
from pyspark.sql.functions import lit
df.withColumn("身份",lit('正式员工')).show(3)
df.withColumn("补贴金额",lit('300')).show(3)
df.printSchema()
df.withColumn("身份",lit('正式员工')).withColumn("补贴金额",lit('300')).printSchema()
4、去除空格
from pyspark.sql.functions import trim,ltrim,rtrim,col
df_new = df.withColumn("new_name",concat(lit(" "),df['first_name'],lit(" ")))
df_new.show()
df_new.select(
"new_name",
format_string("#%s#",col("new_name")).alias("source"),
format_string("#%s#", ltrim(col("new_name"))).alias("ltrim_result"),
format_string("#%s#", rtrim(col("new_name"))).alias("rtrim_result"),
format_string("#%s#", trim(col("new_name"))).alias("trim_result")
).show(5)
5、正则提取
from pyspark.sql.functions import regexp_extract
df.select(
'birthday',
regexp_extract(df['birthday'],r'(\d+)-(\d+)-(\d+)',1).alias('year'),
regexp_extract(df['birthday'],r'(\d+)-(\d+)-(\d+)',2).alias('month'),
regexp_extract(df['birthday'],r'(\d+)-(\d+)-(\d+)',3).alias('day')
).show(5)
6、正则替换
from pyspark.sql.functions import regexp_replace
df_new = df.withColumn("姓名",format_string("姓%s 名%s",df['first_name'],df['last_name']))
df_new.show(5)
df_new.withColumn("清理姓名",regexp_replace(df_new['姓名'],r'姓|名| ','')).show(5)
7、提取字符串的子串
from pyspark.sql.functions import substring
df.select(
'first_name',
'birthday',
substring(df['birthday'],0,4).alias('year'),
substring(df['birthday'],6,2).alias('month'),
substring(df['birthday'],-2,2).alias('day'),
).show(5)
8、字符串拆分
from pyspark.sql.functions import split,size
df_new= df.select(
'birthday',
split(df['birthday'],'-').alias('splits'),
)
df_new.show(5)
df_new.printSchema()
df_new.select(
'birthday',
'splits',
df_new['splits'].getItem(0).alias("year"),
df_new['splits'].getItem(1).alias("month"),
df_new['splits'].getItem(2).alias("day"),
size(df_new['splits']).alias('size')
).show(5)