kafka部署和基本操作

一、部署kafka

解压

tar xzvf kafka_2.12-3.9.1.tgz

tar -zxf kafka_2.12-3.9.1.tgz

1.修改config/server.properties

bash 复制代码
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#
# This configuration file is intended for use in ZK-based mode, where Apache ZooKeeper is required.
# See kafka.server.KafkaConfig for additional details and defaults
#

############################# Server Basics #############################

# The id of the broker. This must be set to a unique integer for each broker.
broker.id=0

############################# Socket Server Settings #############################

# The address the socket server listens on. If not configured, the host name will be equal to the value of
# java.net.InetAddress.getCanonicalHostName(), with PLAINTEXT listener name, and port 9092.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
#listeners=PLAINTEXT://:9092

# Listener name, hostname and port the broker will advertise to clients.
# If not set, it uses the value for "listeners".
#advertised.listeners=PLAINTEXT://your.host.name:9092

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


############################# Log Basics #############################

# A comma separated list of directories under which to store log files
#log.dirs=/tmp/kafka-logs
log.dirs=/data3/kafka_new_0617/kafka_log_dir

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
#log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
zookeeper.connect=localhost:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=18000


############################# Group Coordinator Settings #############################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0

2.修改config/zookeeper.properties

bash 复制代码
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# the directory where the snapshot is stored.
dataDir=/data3/kafka_new_0617/zook_data
# the port at which the clients will connect
clientPort=2181
# disable the per-ip limit on the number of connections since this is a non-production config
maxClientCnxns=0
# Disable the adminserver by default to avoid port conflicts.
# Set the port to something non-conflicting if choosing to enable this
admin.enableServer=false
# admin.serverPort=8080

3.启动kafka

bash 复制代码
bin/zookeeper-server-start.sh -daemon config/zookeeper.properties
bin/kafka-server-start.sh -daemon config/server.properties

4.kafka常用命令

bash 复制代码
a、kafka-acls.sh #配置,查看kafka集群鉴权信息
b、kafka-configs.sh #查看,修改kafka配置
c、kafka-console-consumer.sh #消费命令
d、kafka-console-producer.sh #生产命令
e、kafka-consumer-groups.sh #查看消费者组,重置消费位点等
f、kafka-consumer-perf-test.sh #kafka自带消费性能测试命令
g、kafka-mirror-maker.sh #kafka集群间同步命令
h、kafka-preferred-replica-election.sh #重新选举topic分区leader
i、kafka-producer-perf-test.sh #kafka自带生产性能测试命令
j、kafka-reassign-partitions.sh #kafka数据重平衡命令
k、kafka-run-class.sh #kafka执行脚本
l、kafka-server-start.sh #进程启动
m、kafka-server-stop.sh #进程停止
n、kafka-topics.sh #查询topic状态,新建,删除,扩容

创建topic

bash 复制代码
kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic merchant-topic-test

查看topic list

bash 复制代码
bin/kafka-topics.sh --list --bootstrap-server localhost:9092

删除topic

bash 复制代码
bin/kafka-topics.sh --delete --bootstrap-server localhost:9092 --topic tidb_btb_merchant

消费topic(实时查看写入的日志)

bash 复制代码
./bin/kafka-console-consumer.sh --bootstrap-server 10.126.106.158:9092 --from-beginning --topic tidb_btb_merchant
./bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --from-beginning --topic jasonhu-test
./bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic jasonhu-test --partition 0 --offset latest

producer msg:# 使用控制台生产者写入数据(逐行输入),写入后可以通过kafka-console-consumer.sh实时查看写入结果

bash 复制代码
./bin/kafka-console-producer.sh --bootstrap-server localhost:9092 --topic jasonhu-test

5.问题解决

(1).Member console-consumer-19248bcd-b405-4367-979a-6a4baa37e8f2 in group console-consumer-71214 has failed, removing it from the group (kafka.coordinator.group.GroupCoordinator)

该问题实际上是个乌龙,实操通过kafka-console-consumer.sh消费topic,一直没有数据,查看kafka日志,发现了上面日志;

经验证,发现是没有最新日志写入,所以消费不到日志。

相关推荐
高小秋2 小时前
Hadoop 技术生态体系
大数据·hadoop·分布式
李明一.4 小时前
Spark 在小众日常场景中的实战应用:从小店数据到社区活动
大数据·分布式·spark
Edingbrugh.南空4 小时前
Kafka线上集群部署方案:从环境选型到资源规划思考
分布式·kafka
我是老孙4 小时前
Kafka节点注册冲突问题分析与解决
分布式·kafka
蓝宗林6 小时前
Spark入门到实践
大数据·分布式·spark
Swift社区6 小时前
从混乱到稳定:如何用 Event Sourcing + CRDT 构建分布式订单系统
分布式
杨同学technotes7 小时前
Spring Kafka进阶:实现多态消息消费
后端·kafka
秋恬意7 小时前
什么是seata
分布式
ThisIsClark7 小时前
什么是Spark
大数据·分布式·spark