day37

作业

import torch

import torch.nn as nn

from torch.utils.data import DataLoader, TensorDataset

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

1. 加载数据

data = pd.read_csv('data.csv')

2. 数据预处理

划分训练集和验证集

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)

特征标准化

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_val = scaler.transform(X_val)

转换为PyTorch张量

X_train_tensor = torch.FloatTensor(X_train)

y_train_tensor = torch.FloatTensor(y_train)

X_val_tensor = torch.FloatTensor(X_val)

y_val_tensor = torch.FloatTensor(y_val)

创建数据集和数据加载器

train_dataset = TensorDataset(X_train_tensor, y_train_tensor)

val_dataset = TensorDataset(X_val_tensor, y_val_tensor)

train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)

val_loader = DataLoader(val_dataset, batch_size=32)

3. 定义模型

class CreditModel(nn.Module):

def init(self, input_size):

super(CreditModel, self).init()

self.fc1 = nn.Linear(input_size, 64)

self.fc2 = nn.Linear(64, 32)

self.fc3 = nn.Linear(32, 1)

self.relu = nn.ReLU()

self.sigmoid = nn.Sigmoid()

def forward(self, x):

x = self.relu(self.fc1(x))

x = self.relu(self.fc2(x))

x = self.sigmoid(self.fc3(x))

return x

4. 初始化模型、损失函数和优化器

input_size = X_train.shape[1] # 特征维度

model = CreditModel(input_size)

criterion = nn.BCELoss() # 二分类任务,如果是回归任务使用MSELoss

optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

5. 加载预训练权重(如果存在)

try:

model.load_state_dict(torch.load('credit_model_weights.pth'))

print("成功加载预训练权重")

except:

print("未找到预训练权重,从头开始训练")

6. 训练配置

patience = 10 # 早停耐心值

best_val_loss = float('inf')

counter = 0

additional_epochs = 50 # 继续训练的轮数

7. 训练循环

for epoch in range(additional_epochs):

训练阶段

model.train()

train_loss = 0.0

for inputs, labels in train_loader:

optimizer.zero_grad()

outputs = model(inputs)

loss = criterion(outputs, labels.unsqueeze(1))

loss.backward()

optimizer.step()

train_loss += loss.item() * inputs.size(0)

验证阶段

model.eval()

val_loss = 0.0

with torch.no_grad():

for inputs, labels in val_loader:

outputs = model(inputs)

loss = criterion(outputs, labels.unsqueeze(1))

val_loss += loss.item() * inputs.size(0)

计算平均损失

train_loss = train_loss / len(train_loader.dataset)

val_loss = val_loss / len(val_loader.dataset)

print(f'Epoch [{epoch+1}/{additional_epochs}], Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}')

早停策略

if val_loss < best_val_loss:

best_val_loss = val_loss

counter = 0

保存最佳模型权重

torch.save(model.state_dict(), 'best_credit_model_weights.pth')

else:

counter += 1

if counter >= patience:

print(f'验证损失连续{patience}轮未改善,提前停止训练!')

break

8. 保存最终模型权重

torch.save(model.state_dict(), 'credit_model_weights_final.pth')

print("训练完成,模型权重已保存")

相关推荐
追风少年ii2 分钟前
多组学扩展---分子对接pyrosetta
python·数据分析·空间·单细胞
2301_8213696120 分钟前
使用Python进行图像识别:CNN卷积神经网络实战
jvm·数据库·python
m0_5613596724 分钟前
使用Kivy开发跨平台的移动应用
jvm·数据库·python
编程火箭车1 小时前
04.第一个 Python 程序:Hello World 从编写到运行全解析
python·python第一个程序·python入门报错解决·python新手教程·hello world 程序·python终端运行·pycharm运行代码
qq_423233901 小时前
如何用FastAPI构建高性能的现代API
jvm·数据库·python
疯狂踩坑人1 小时前
【Python版 2026 从零学Langchain 1.x】(二)结构化输出和工具调用
后端·python·langchain
HDO清风2 小时前
CASIA-HWDB2.x 数据集DGRL文件解析(python)
开发语言·人工智能·pytorch·python·目标检测·计算机视觉·restful
weixin_499771552 小时前
Python上下文管理器(with语句)的原理与实践
jvm·数据库·python
weixin_452159552 小时前
高级爬虫技巧:处理JavaScript渲染(Selenium)
jvm·数据库·python
多米Domi0112 小时前
0x3f 第48天 面向实习的八股背诵第五天 + 堆一题 背了JUC的题,java.util.Concurrency
开发语言·数据结构·python·算法·leetcode·面试