激活层为softmax时,CrossEntropy损失函数对激活层输入Z的梯度

∂ L ∂ Z = y ^ − y \frac{\partial L}{\partial Z}=\hat{y}-y ∂Z∂L=y^−y

其中 y y y为真实值,采用one-hot编码, y ^ \hat{y} y^为softmax输出的预测值

证明: \textbf{证明:} 证明:

根据softmax公式:
y ^ i = e z i ∑ j = 1 n e z j \hat{y}i=\frac{e^{z_i}}{\sum{j=1}^ne^{z_j}} y^i=∑j=1nezjezi

根据CrossEntropy公式:

L = − ∑ i = 1 n y i l o g y ^ i = − ∑ i = 1 n y i l o g e z i ∑ j = 1 n e z j = − y l l o g e z l ∑ j = 1 n e z j − ∑ i = 1 , i ≠ l n y i l o g e z i ∑ j = 1 n e z j \begin{align*} L&=-\sum_{i=1}^ny_ilog\hat{y}i \\ &=-\sum{i=1}^ny_ilog\frac{e^{z_i}}{\sum_{j=1}^ne^{z_j}} \\ &=-y_llog\frac{e^{z_l}}{\sum_{j=1}^ne^{z_j}}-\sum_{i=1,i \neq l}^ny_ilog\frac{e^{z_i}}{\sum_{j=1}^ne^{z_j}} \end{align*} L=−i=1∑nyilogy^i=−i=1∑nyilog∑j=1nezjezi=−yllog∑j=1nezjezl−i=1,i=l∑nyilog∑j=1nezjezi

所以
∂ L ∂ z l = − ∑ i = 1 , i ≠ l n y i ∑ j = 1 n e z j e z i − e z i e z l ( ∑ j = 1 n e z j ) 2 − y l ∑ j = 1 n e z j e z l e z l ∑ j = 1 n e z j − e z l e z l ( ∑ j = 1 n e z j ) 2 = − ∑ i = 1 , i ≠ l n y i ( − e z l ∑ j = 1 n e z j ) − y l ∑ j = 1 n e z j − e z l ∑ j = 1 n e z j = − ∑ i = 1 , i ≠ l n y i ( − e z l ∑ j = 1 n e z j ) − y l + y l e z l ∑ j = 1 n e z j = − y l + ∑ i = 1 n y i e z l ∑ j = 1 n e z j = − y l + e z l ∑ j = 1 n e z j ∑ i = 1 n y i \begin{align*} \frac{\partial L}{\partial z_l} &=-\sum_{i=1,i\neq l}^ny_i\frac{\sum_{j=1}^ne^{z_j}} {e^{z_i}}\frac{-e^{z_i}e^{z_l}}{(\sum_{j=1}^ne^{z_j})^2}-y_l\frac{\sum_{j=1}^ne^{z_j}}{e^{z_l}}\frac{e^{z_l}\sum_{j=1}^ne^{z_j}-e^{z_l}e^{z_l}}{(\sum_{j=1}^ne^{z_j})^2} \\ &=-\sum_{i=1,i\neq l}^ny_i(\frac{-e^{z_l}}{\sum_{j=1}^ne^{z_j}})-y_l\frac{\sum_{j=1}^ne^{z_j}-e^{z_l}}{\sum_{j=1}^ne^{z_j}} \\ &=-\sum_{i=1,i\neq l}^ny_i(\frac{-e^{z_l}}{\sum_{j=1}^ne^{z_j}})-y_l+y_l\frac{e^{z_l}}{\sum_{j=1}^ne^{z_j}} \\ &=-y_l+\sum_{i=1}^ny_i\frac{e^{z_l}}{\sum_{j=1}^ne^{z_j}} \\ &=-y_l+\frac{e^{z_l}}{\sum_{j=1}^ne^{z_j}}\sum_{i=1}^ny_i \end{align*} ∂zl∂L=−i=1,i=l∑nyiezi∑j=1nezj(∑j=1nezj)2−eziezl−ylezl∑j=1nezj(∑j=1nezj)2ezl∑j=1nezj−ezlezl=−i=1,i=l∑nyi(∑j=1nezj−ezl)−yl∑j=1nezj∑j=1nezj−ezl=−i=1,i=l∑nyi(∑j=1nezj−ezl)−yl+yl∑j=1nezjezl=−yl+i=1∑nyi∑j=1nezjezl=−yl+∑j=1nezjezli=1∑nyi

因为 y y y采用one-hot编码,所以
∑ i = 1 n y i = 1 \begin{align*} \sum_{i=1}^ny_i=1 \end{align*} i=1∑nyi=1

所以
∂ L ∂ z l = − y l + e z l ∑ j = 1 n e z j = y ^ l − y l \frac{\partial L}{\partial z_l}=-y_l+\frac{e^{z_l}}{\sum_{j=1}^ne^{z_j}}=\hat{y}_l-y_l ∂zl∂L=−yl+∑j=1nezjezl=y^l−yl

所以
∂ L ∂ Z = y ^ − y \frac{\partial L}{\partial Z}=\hat{y}-y ∂Z∂L=y^−y

相关推荐
悟乙己2 小时前
MLops | 基于AWS Lambda 架构构建强大的机器学习(ML)血缘关系
机器学习·架构·aws
WWZZ20252 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam
koo3643 小时前
李宏毅机器学习笔记21-26周汇总
人工智能·笔记·机器学习
Blossom.1185 小时前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
救救孩子把6 小时前
18-机器学习与大模型开发数学教程-第1章 1-10 本章总结与习题
人工智能·数学·机器学习
救救孩子把7 小时前
17-机器学习与大模型开发数学教程-第1章 1-9 凸函数与凸优化基础
人工智能·数学·机器学习
明月照山海-7 小时前
机器学习周报十八
人工智能·机器学习
敢敢のwings7 小时前
VLA: 从具身智能到自动驾驶的关键桥梁
人工智能·机器学习·自动驾驶
zenRRan7 小时前
用中等难度prompt做高效post training
人工智能·深度学习·机器学习·计算机视觉·prompt
Mr.看海9 小时前
机器学习鼻祖级算法——使用SVM实现多分类及Python实现
算法·机器学习·支持向量机