基于YOLO的语义分割实战(以猪的分割为例)

数据集准备

数据集配置文件

其实语义分割和目标检测类似,包括数据集制备、存放格式基本一致像这样放好即可。

然后需要编写一个data.yaml文件,对应的是数据的配置文件。

python 复制代码
train: C:\图标\dan\语义分割pig\dataset\train\images #绝对路径即可
val: C:\图标\dan\语义分割pig\dataset\valid\images
test: C:\图标\dan\语义分割pig\dataset\test\images

nc: 1
names: ['pig']

# roboflow:
#   workspace: testecontagem
#   project: teste-uggpc
#   version: 4
#   license: CC BY 4.0
#   url: https://universe.roboflow.com/testecontagem/teste-uggpc/dataset/4

train.py

然后我们编写训练代码train.py

作者这里没有参照官方,因为都是兼容的,OK下面给出代码:

python 复制代码
from ultralytics import YOLO
import torch

 
# 加载模型
model = YOLO('./yolov8m-seg.yaml').load('./yolov8m-seg.pt')  # 从YAML构建并转移权重
 
if __name__ == '__main__':
    torch.cuda.empty_cache()
    # 训练模型
    results = model.train(data='./data.yaml', epochs=150, imgsz=256,batch = 32)
 
    metrics = model.val()

至于环境配置这里不再过多讲解。。。

训练过程

运行train.py即可开始训练,这里需要准备模型配置文件和预训练权重,当然这里已经配置完成,存放在本地目录。

训练结果

出现如下结果即可训练,训练结果保存在runs下面,

这是训练完的截图,里面对应的文件与目标检测类似。

OK,至此模型训练完毕。

数据集链接:

语义分割数据集-pig-seg资源-CSDN文库https://download.csdn.net/download/2202_75851137/91084153

相关推荐
创思通信17 小时前
树莓派的YOLO智能AI识别系统,识别ESP32还是STM32
人工智能·stm32·yolo
I'm a winner2 天前
基于YOLO算法的医疗应用专题:第一章 计算机视觉与深度学习概述
算法·yolo·计算机视觉
java1234_小锋2 天前
[免费]基于Python的YOLO深度学习垃圾分类目标检测系统【论文+源码】
python·深度学习·yolo·垃圾分类·垃圾分类检测
AI棒棒牛2 天前
论文精读系列:Retinanet——目标检测领域中的SCI对比实验算法介绍!可一键跑通的对比实验,极大节省小伙伴的时间!!!
yolo·目标检测·计算机视觉·对比实验·1024程序员节·创新·rtdter
遇雪长安2 天前
深度学习YOLO实战:4、模型的三要素:任务、类别与规模
人工智能·深度学习·yolo
侯喵喵2 天前
Jetson orin agx配置ultralytics 使用docker或conda
yolo·docker·1024程序员节·ultralytics
tainshuai3 天前
YOLOv4 实战指南:单 GPU 训练的目标检测利器
yolo·目标检测·机器学习
飞翔的佩奇3 天前
【完整源码+数据集+部署教程】【运动的&足球】足球场地区域图像分割系统源码&数据集全套:改进yolo11-RFAConv
前端·python·yolo·计算机视觉·数据集·yolo11·足球场地区域图像分割系统
夏天是冰红茶3 天前
恶劣天气目标检测IA-YOLO
yolo·目标检测·目标跟踪
MavenTalk3 天前
如何根据不同的场景选择YOLO相应的基座模型
python·yolo·yolo11n·yolo11m·yolo11s·yolo11x