基于YOLO的语义分割实战(以猪的分割为例)

数据集准备

数据集配置文件

其实语义分割和目标检测类似,包括数据集制备、存放格式基本一致像这样放好即可。

然后需要编写一个data.yaml文件,对应的是数据的配置文件。

python 复制代码
train: C:\图标\dan\语义分割pig\dataset\train\images #绝对路径即可
val: C:\图标\dan\语义分割pig\dataset\valid\images
test: C:\图标\dan\语义分割pig\dataset\test\images

nc: 1
names: ['pig']

# roboflow:
#   workspace: testecontagem
#   project: teste-uggpc
#   version: 4
#   license: CC BY 4.0
#   url: https://universe.roboflow.com/testecontagem/teste-uggpc/dataset/4

train.py

然后我们编写训练代码train.py

作者这里没有参照官方,因为都是兼容的,OK下面给出代码:

python 复制代码
from ultralytics import YOLO
import torch

 
# 加载模型
model = YOLO('./yolov8m-seg.yaml').load('./yolov8m-seg.pt')  # 从YAML构建并转移权重
 
if __name__ == '__main__':
    torch.cuda.empty_cache()
    # 训练模型
    results = model.train(data='./data.yaml', epochs=150, imgsz=256,batch = 32)
 
    metrics = model.val()

至于环境配置这里不再过多讲解。。。

训练过程

运行train.py即可开始训练,这里需要准备模型配置文件和预训练权重,当然这里已经配置完成,存放在本地目录。

训练结果

出现如下结果即可训练,训练结果保存在runs下面,

这是训练完的截图,里面对应的文件与目标检测类似。

OK,至此模型训练完毕。

数据集链接:

语义分割数据集-pig-seg资源-CSDN文库https://download.csdn.net/download/2202_75851137/91084153

相关推荐
FL16238631293 小时前
无人机视角农田焚烧秸秆检测数据集VOC+YOLO格式3245张2类别
yolo
工程师老罗4 小时前
Pascal VOC数据集简介及数据格式说明
yolo
Lun3866buzha5 小时前
【深度学习应用】鸡蛋裂纹检测与分类:基于YOLOv3的智能识别系统,从图像采集到缺陷分类的完整实现
深度学习·yolo·分类
Lun3866buzha5 小时前
YOLOv8-SEG-FastNet-BiFPN实现室内物品识别与分类:背包、修正带、立方体和铅笔盒检测指南
yolo·分类·数据挖掘
Faker66363aaa6 小时前
基于YOLOv8-GhostHGNetV2的绝缘子破损状态检测与分类系统实现
yolo·分类·数据挖掘
Ryan老房7 小时前
智能家居AI-家庭场景物体识别标注实战
人工智能·yolo·目标检测·计算机视觉·ai·智能家居
工程师老罗8 小时前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
逸俊晨晖8 小时前
NVIDIA 4090的8路1080p实时YOLOv8目标检测
人工智能·yolo·目标检测·nvidia
工程师老罗10 小时前
YOLOv1数据增强
人工智能·yolo
weixin_4684668510 小时前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参