基于YOLO的语义分割实战(以猪的分割为例)

数据集准备

数据集配置文件

其实语义分割和目标检测类似,包括数据集制备、存放格式基本一致像这样放好即可。

然后需要编写一个data.yaml文件,对应的是数据的配置文件。

python 复制代码
train: C:\图标\dan\语义分割pig\dataset\train\images #绝对路径即可
val: C:\图标\dan\语义分割pig\dataset\valid\images
test: C:\图标\dan\语义分割pig\dataset\test\images

nc: 1
names: ['pig']

# roboflow:
#   workspace: testecontagem
#   project: teste-uggpc
#   version: 4
#   license: CC BY 4.0
#   url: https://universe.roboflow.com/testecontagem/teste-uggpc/dataset/4

train.py

然后我们编写训练代码train.py

作者这里没有参照官方,因为都是兼容的,OK下面给出代码:

python 复制代码
from ultralytics import YOLO
import torch

 
# 加载模型
model = YOLO('./yolov8m-seg.yaml').load('./yolov8m-seg.pt')  # 从YAML构建并转移权重
 
if __name__ == '__main__':
    torch.cuda.empty_cache()
    # 训练模型
    results = model.train(data='./data.yaml', epochs=150, imgsz=256,batch = 32)
 
    metrics = model.val()

至于环境配置这里不再过多讲解。。。

训练过程

运行train.py即可开始训练,这里需要准备模型配置文件和预训练权重,当然这里已经配置完成,存放在本地目录。

训练结果

出现如下结果即可训练,训练结果保存在runs下面,

这是训练完的截图,里面对应的文件与目标检测类似。

OK,至此模型训练完毕。

数据集链接:

语义分割数据集-pig-seg资源-CSDN文库https://download.csdn.net/download/2202_75851137/91084153

相关推荐
shao91851614 小时前
Gradio全解11——Streaming:流式传输的视频应用(3)——YOLO系列模型技术架构与实战
yolo·coco·yolov10·yoloe
JoinApper1 天前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
XiaoMu_0012 天前
基于Django+Vue3+YOLO的智能气象检测系统
python·yolo·django
程序员柳2 天前
基于YOLOv8的车辆轨迹识别与目标检测研究分析软件源代码+详细文档
人工智能·yolo·目标检测
小胖墩有点瘦3 天前
【基于yolo和web的垃圾分类系统】
人工智能·python·yolo·flask·毕业设计·课程设计·垃圾分类
格林威3 天前
棱镜的技术加持:线扫相机如何同时拍RGB和SWIR?
人工智能·深度学习·数码相机·yolo·计算机视觉
大学生毕业题目3 天前
毕业项目推荐:83-基于yolov8/yolov5/yolo11的农作物杂草检测识别系统(Python+卷积神经网络)
人工智能·python·yolo·目标检测·cnn·pyqt·杂草识别
阿崽meitoufa3 天前
[水果目标检测5]AppleYOLO:基于深度OC-SORT的改进YOLOv8苹果产量估计方法
yolo
weixin_377634843 天前
【目标检测】特征理解与标注技巧
yolo·目标检测
笑脸惹桃花3 天前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda