Z-Ant开源程序是简化了微处理器上神经网络的部署和优化

​一、软件介绍

文末提供程序和源码下载

Z-Ant (Zig-Ant) 是一个全面的开源神经网络框架,专门用于在微控制器和边缘设备上部署优化的 AI 模型。Z-Ant 使用 Zig 构建,为资源受限的硬件上的模型优化、代码生成和实时推理提供端到端工具。

二、全面的模型部署

  • ONNX Model Support : Full compatibility with ONNX format models
    ONNX 模型支持:与 ONNX 格式模型完全兼容
  • Cross-platform Compilation : ARM Cortex-M, RISC-V, x86, and more
    跨平台编译:ARM Cortex-M、RISC-V、x86 等
  • Static Library Generation : Generate optimized static libraries for any target architecture
    静态库生成:为任何目标架构生成优化的静态库
  • Real-time Inference : Microsecond-level prediction times on microcontrollers
    实时推理:微控制器上的微秒级预测时间

三、高级优化引擎

  • Quantization : Automatic model quantization with dynamic and static options
    量化:具有动态和静态选项的自动模型量化
  • Pruning : Neural network pruning for reduced model size
    修剪:用于减小模型大小的神经网络修剪
  • Buffer Optimization : Memory-efficient tensor operations
    缓冲区优化:节省内存的张量运算
  • Flash vs RAM Execution : Configurable execution strategies
    Flash 与 RAM 执行:可配置的执行策略

四、GUI Interface 🖥 GUI 界面

Z-Ant includes an experimental cross-platform GUI built with SDL for basic model selection and code generation. Note that the GUI is currently unstable and under active development - we recommend using the command-line interface for production workflows.
Z-Ant 包括一个使用 SDL 构建的实验性跨平台 GUI,用于基本模型选择和代码生成。请注意,GUI 当前不稳定,正在积极开发中 - 我们建议对生产工作流使用命令行界面。

📷 ImageToTensor Processing

📷 ImageToTensor 处理

  • JPEG Decoding : Complete JPEG image processing pipeline
    JPEG 解码:完整的 JPEG 图像处理管道
  • Multiple Color Spaces : RGB, YUV, Grayscale support
    多个色彩空间:支持 RGB、YUV、灰度
  • Hardware Optimization : SIMD and platform-specific optimizations
    硬件优化:SIMD 和特定于平台的优化
  • Preprocessing Pipeline : Normalization, resizing, and format conversion
    预处理管道:规范化、调整大小和格式转换

🔧 Extensive ONNX Support

🔧 广泛的 ONNX 支持

  • 30+ Operators : Comprehensive coverage of neural network operations
    30+ 算子:神经网络作全面覆盖
  • Multiple Data Types : Float32, Int64, Bool, and more
    多种数据类型:Float32、Int64、Bool 等
  • Dynamic Shapes : Support for variable input dimensions
    动态形状:支持可变输入尺寸
  • Custom Operators : Extensible operator framework
    自定义运算符:可扩展的运算符框架

Why Z-Ant? 为什么选择 Z-Ant?

  • 🚫 Lack of DL Support : Devices like TI Sitara, Raspberry Pi Pico, or ARM Cortex-M lack comprehensive DL libraries
    🚫 缺乏 DL 支持:TI Sitara、Raspberry Pi Pico 或 ARM Cortex-M 等设备缺乏全面的 DL 库
  • 🌍 Open-source : Complete end-to-end NN deployment and optimization solution
    🌍 开源:完整的端到端 NN 部署和优化解决方案
  • 🎓 Research-Inspired : Implements cutting-edge optimization techniques inspired by MIT's Han Lab research
    🎓 受研究启发:实施受麻省理工学院 Han 实验室研究启发的尖端优化技术
  • 🏛 Academic Collaboration : Developed in collaboration with institutions like Politecnico di Milano
    🏛 学术合作: 与米兰理工大学等机构合作开发
  • ⚡ Performance First : Designed for real-time inference with minimal resource usage
    ⚡ 性能优先:专为实时推理而设计,资源使用量最少
  • 🔧 Developer Friendly : Clear APIs, extensive documentation, and practical examples
    🔧 开发人员友好:清晰的 API、广泛的文档和实际示例

Use Cases 使用案例

  • 🏭 Edge AI : Real-time anomaly detection, predictive maintenance
    🏭 Edge AI:实时异常检测,预测性维护
  • 🤖 IoT & Autonomous Systems : Lightweight AI models for drones, robots, vehicles, IoT devices
    🤖 物联网和自主系统:用于无人机、机器人、车辆、物联网设备的轻量级人工智能模型
  • 📱 Mobile Applications : On-device inference for privacy-preserving AI
    📱 移动应用程序:用于隐私保护 AI 的设备端推理
  • 🏥 Medical Devices : Real-time health monitoring and diagnostics
    🏥 医疗设备:实时健康监测和诊断
  • 🎮 Gaming : AI-powered gameplay enhancement on embedded systems
    🎮 游戏:嵌入式系统上 AI 驱动的游戏增强功能

同类最佳 TinyML 引擎路线图

To establish Z-Ant as the premier tinyML inference engine, we are pursuing several key improvements:
为了将 Z-Ant 确立为首屈一指的 tinyML 推理引擎,我们正在寻求几项关键改进:

🔥 Performance Optimizations

🔥 性能优化

**Ultra-Low Latency Inference

超低延迟推理**

  • Custom Memory Allocators : Zero-allocation inference with pre-allocated memory pools
    自定义内存分配器:使用预分配的内存池进行零分配推理
  • In-Place Operations : Minimize memory copies through tensor operation fusion
    就地作:通过张量运算融合最大限度地减少内存副本
  • SIMD Vectorization : ARM NEON, RISC-V Vector extensions, and x86 AVX optimizations
    SIMD 矢量化:ARM NEON、RISC-V 矢量扩展和 x86 AVX 优化
  • Assembly Kernels : Hand-optimized assembly for critical operations (matrix multiplication, convolution)
    汇编内核:针对关键运算(矩阵乘法、卷积)的手动优化汇编
  • Cache-Aware Algorithms : Memory access patterns optimized for L1/L2 cache efficiency
    高速缓存感知算法:针对 L1/L2 高速缓存效率优化的内存访问模式
**Advanced Model Optimization

高级模型优化**

  • Dynamic Quantization : Runtime precision adjustment based on input characteristics
    动态量化:根据输入特性进行运行时精度调整
  • Structured Pruning : Channel and block-level pruning for hardware-friendly sparsity
    结构化修剪:通道和块级修剪,实现硬件友好的稀疏性
  • Knowledge Distillation : Automatic teacher-student model compression pipeline
    知识蒸馏:自动师生模型压缩管道
  • Neural Architecture Search (NAS) : Hardware-aware model architecture optimization
    神经架构搜索 (NAS):硬件感知模型架构优化
  • Binary/Ternary Networks : Extreme quantization for ultra-low power inference
    二进制/三元网络:用于超低功耗推理的极端量化

Hardware Acceleration ⚡ 硬件加速

**Microcontroller-Specific Optimizations

微控制器特定的优化**

  • DSP Instruction Utilization : Leverage ARM Cortex-M DSP instructions and RISC-V packed SIMD
    DSP 指令利用:利用 ARM Cortex-M DSP 指令和 RISC-V 封装的 SIMD
  • DMA-Accelerated Operations : Offload data movement to DMA controllers
    DMA 加速作:将数据移动卸载到 DMA 控制器
  • Flash Execution Strategies : XIP (Execute-in-Place) optimization for flash-resident models
    Flash 执行策略:针对 Flash 驻留模型的 XIP(就地执行)优化
  • Low-Power Modes : Dynamic frequency scaling and sleep mode integration
    低功耗模式:动态频率调节和休眠模式集成
  • Hardware Security Modules : Secure model storage and execution
    硬件安全模块:安全的模型存储和执行
**Emerging Hardware Support

新兴硬件支持**

  • NPU Integration : Support for dedicated neural processing units (e.g., Arm Ethos, Intel Movidius)
    NPU 集成:支持专用神经处理单元(例如 Arm Ethos、Intel Movidius)
  • FPGA Acceleration : Custom hardware generation for ultra-performance inference
    FPGA 加速:用于超高性能推理的定制硬件生成
  • GPU Compute : OpenCL/CUDA kernels for edge GPU acceleration
    GPU 计算:用于边缘 GPU 加速的 OpenCL/CUDA 内核
  • Neuromorphic Computing : Spike-based neural network execution
    Neuromorphic Computing:基于尖峰的神经网络执行

🧠 Advanced AI Capabilities

🧠 高级 AI 功能

**Model Compression & Acceleration

模型压缩和加速**

  • Lottery Ticket Hypothesis : Sparse subnetwork discovery and training
    彩票假说:稀疏子网络发现和训练
  • Progressive Quantization : Gradual precision reduction during training/deployment
    渐进式量化:训练/部署期间逐渐降低精度
  • Magnitude-Based Pruning : Automatic weight importance analysis
    基于量级的修剪:自动权重重要性分析
  • Channel Shuffling : Network reorganization for efficient inference
    通道改组:网络重组以实现高效推理
  • Tensor Decomposition : Low-rank approximation for parameter reduction
    张量分解:用于参数缩减的低秩近似
Adaptive Inference 自适应推理
  • Early Exit Networks : Conditional computation based on input complexity
    Early Exit Networks:基于输入复杂度的条件计算
  • Dynamic Model Selection : Runtime model switching based on resource availability
    动态模型选择:基于资源可用性的运行时模型切换
  • Cascaded Inference : Multi-stage models with progressive complexity
    级联推理:具有渐进复杂性的多阶段模型
  • Attention Mechanism Optimization : Efficient transformer and attention implementations
    注意力机制优化:高效的 transformer 和 attention 实现

🔧 Developer Experience & Tooling

🔧 开发者体验和工具

**Advanced Profiling & Analysis

高级分析和分析**

  • Hardware Performance Counters : Cycle-accurate performance measurement
    硬件性能计数器:周期精确的性能测量
  • Energy Profiling : Power consumption analysis per operation
    能量分析:每个作的功耗分析
  • Memory Footprint Analysis : Detailed RAM/Flash usage breakdown
    内存占用分析:详细的 RAM/Flash 使用情况明细
  • Thermal Analysis : Temperature impact on inference performance
    热分析:温度对推理性能的影响
  • Real-Time Visualization : Live performance monitoring dashboards
    实时可视化:实时性能监控仪表板
**Automated Optimization Pipeline

自动优化管道**

  • AutoML Integration : Automated hyperparameter tuning for target hardware
    AutoML 集成:目标硬件的自动超参数调整
  • Benchmark-Driven Optimization : Continuous performance regression testing
    基准测试驱动优化:持续性能回归测试
  • Hardware-in-the-Loop Testing : Automated testing on real hardware platforms
    硬件在环测试:在真实硬件平台上进行自动化测试
  • Model Validation : Accuracy preservation verification throughout optimization
    模型验证:在整个优化过程中保持精度验证
  • Deploy-to-Production Pipeline : One-click deployment to embedded systems
    部署到生产管道:一键部署到嵌入式系统

🌐 Ecosystem & Integration

🌐 生态系统与集成

**Framework Interoperability

框架互作性**

  • TensorFlow Lite Compatibility : Seamless migration from TFLite models
    TensorFlow Lite 兼容性:从 TFLite 模型无缝迁移
  • PyTorch Mobile Integration : Direct PyTorch model deployment pipeline
    PyTorch 移动集成:直接 PyTorch 模型部署管道
  • ONNX Runtime Parity : Feature-complete ONNX runtime alternative
    ONNX 运行时奇偶校验:功能齐全的 ONNX 运行时替代方案
  • MLflow Integration : Model versioning and experiment tracking
    MLflow 集成:模型版本控制和实验跟踪
  • Edge Impulse Compatibility : Integration with popular edge ML platforms
    Edge Impulse 兼容性:与流行的边缘 ML 平台集成
Production Deployment 生产部署
  • OTA Model Updates : Over-the-air model deployment and versioning
    OTA 模型更新:无线模型部署和版本控制
  • A/B Testing Framework : Safe model rollout with performance comparison
    A/B 测试框架:安全推出模型并进行性能比较
  • Federated Learning Support : Distributed training on edge devices
    联邦学习支持:边缘设备上的分布式训练
  • Model Encryption : Secure model storage and execution
    模型加密:安全的模型存储和执行
  • Compliance Tools : GDPR, HIPAA, and safety-critical certifications
    合规性工具:GDPR、HIPAA 和安全关键认证

📊 Benchmarking & Validation

📊 基准测试和验证

**Industry-Standard Benchmarks

行业标准基准**

  • MLPerf Tiny : Competitive performance on standard benchmarks
    MLPerf Tiny:在标准基准测试中具有竞争力的性能
  • EEMBC MLMark : Energy efficiency measurements
    EEMBC MLMark:能效测量
  • Custom TinyML Benchmarks : Domain-specific performance evaluation
    自定义 TinyML 基准测试:特定领域的性能评估
  • Real-World Workload Testing : Production-representative model validation
    真实工作负载测试:具有生产代表性的模型验证
  • Cross-Platform Consistency : Identical results across all supported hardware
    跨平台一致性:在所有支持的硬件上获得相同的结果
Quality Assurance 质量保证
  • Fuzzing Infrastructure : Automated testing with random inputs
    模糊测试基础设施:使用随机输入进行自动化测试
  • Formal Verification : Mathematical proof of correctness for critical operations
    形式化验证:关键作正确性的数学证明
  • Hardware Stress Testing : Extended operation under extreme conditions
    硬件压力测试:在极端条件下延长作时间
  • Regression Test Suite : Comprehensive backward compatibility testing
    回归测试套件:全面的向后兼容性测试
  • Performance Monitoring : Continuous integration with performance tracking
    性能监控:与性能跟踪持续集成

🚀 Getting Started for Contributors

🚀 投稿人入门

Prerequisites 先决条件

  • Zig Compiler : Install the latest Zig compiler
    Zig 编译器:安装最新的 Zig 编译器
  • Git : For version control and collaboration
    Git:用于版本控制和协作
  • Basic Zig Knowledge : Improve Zig proficiency via Ziglings
    Zig 基础知识:通过 Ziglings 提高 Zig 熟练度

Quick Setup 快速设置

  1. Clone the repository: 克隆存储库:

    复制代码
    git clone https://github.com/ZIGTinyBook/Z-Ant.git
    cd Z-Ant
  2. Run tests to verify setup:
    运行测试以验证设置:

    复制代码
    zig build test --summary all
  3. Generate code for a model:
    为模型生成代码:

    复制代码
    zig build codegen -Dmodel=mnist-1

First Time Contributors 首次贡献者

Start here if you're new to Z-Ant:
如果您是 Z-Ant 的新用户,请从这里开始:

  1. Run existing tests : Use zig build test --summary all to understand the codebase
    运行现有测试:用于 zig build test --summary all 了解代码库
  2. Try code generation : Use zig build codegen -Dmodel=mnist-1 to see the workflow
    尝试代码生成:用于 zig build codegen -Dmodel=mnist-1 查看工作流程
  3. Read the documentation : Check /docs/ folder for detailed guides
    阅读文档:检查 /docs/ 文件夹以获取详细指南
  4. Review the Hackathon Guide : For specific guidance on the rendering and lowering pipeline, refer to the HackathonGuide.md.
    查看 Hackathon 指南:有关渲染和降低管道的具体指导,请参阅 HackathonGuide.md

Project Architecture 项目架构

notranslate 复制代码
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>Z-Ant/
├── src/                    # Core source code
│   ├── Core/              # Neural network core functionality
│   ├── CodeGen/           # Code generation engine
│   ├── ImageToTensor/     # Image preprocessing pipeline
│   ├── onnx/              # ONNX model parsing
│   └── Utils/             # Utilities and helpers
├── tests/                 # Comprehensive test suite
├── datasets/              # Sample models and test data
├── generated/             # Generated code output
├── examples/              # Arduino and microcontroller examples
└── docs/                  # Documentation and guides
</code></span></span></span></span>

🛠️ Development Workflow 🛠️ 开发工作流程

Quick Start Commands 快速启动命令

复制代码
# Run comprehensive tests
zig build test --summary all

# Generate code for a specific model
zig build codegen -Dmodel=mnist-1

# Test generated code
zig build test-codegen -Dmodel=mnist-1

# Compile static library for deployment
zig build lib -Dmodel=mnist-1 -Dtarget=thumb-freestanding -Dcpu=cortex_m33

Git Branching Strategy Git 分支策略

We follow a structured branching strategy to ensure code quality and smooth collaboration:
我们遵循结构化的分支策略来确保代码质量和顺利协作:

Branch Types 分支类型
  • main : Stable, production-ready code for releases
    main :用于发布的稳定、生产就绪代码
  • feature/<feature-name> : New features under development
    feature/<feature-name> :正在开发的新功能
  • fix/<issue-description> : Bug fixes and patches
    fix/<issue-description> :错误修复和补丁
  • docs/<documentation-topic> : Documentation improvements
    docs/<documentation-topic> : 文档改进
  • test/<test-improvements> : Test suite enhancements
    test/<test-improvements> :测试套件增强功能
Best Practices for Contributors

贡献者的最佳实践

  • Test Before Committing : Run zig build test --summary all before every commit
    Test Before Committing:在每次提交之前运行 zig build test --summary all
  • Document Your Code : Follow Zig's doc-comments standard
    记录您的代码:遵循 Zig 的文档注释标准
  • Small, Focused PRs : Keep pull requests small and focused on a single feature/fix
    小型、专注的 PR:保持拉取请求较小并专注于单个功能/修复
  • Use Conventional Commits : Follow commit message conventions (feat:, fix:, docs:, etc.)
    使用常规提交:遵循提交消息约定(feat:、fix:、docs: 等)

Using Z-Ant 🔧 使用 Z-Ant

Development Requirements 开发要求

  • Install the latest Zig compiler
    安装最新的 Zig 编译器
  • Improve Zig proficiency via Ziglings
    通过 Ziglings 提高 Zig 熟练度

Running Tests 运行测试

Add tests to build.zig/test_list.
将测试添加到 build.zig/test_list

  • Regular tests: 定期测试:

    复制代码
    zig build test --summary all
  • Heavy computational tests:
    繁重的计算测试:

    复制代码
    zig build test -Dheavy --summary all

Generating Code for Models

为模型生成代码

复制代码
zig build codegen -Dmodel=model_name [-Dlog -Duser_tests=user_tests.json]

Generated code will be placed in:
生成的代码将被放置在:

notranslate 复制代码
<span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><span style="color:#1f2328"><span style="color:var(--fgColor-default, var(--color-fg-default))"><span style="background-color:var(--bgColor-muted, var(--color-canvas-subtle))"><code>generated/model_name/
├── lib_{model_name}.zig
├── test_{model_name}.zig
└── user_tests.json
</code></span></span></span></span>

Testing Generated Models 测试生成的模型

复制代码
zig build test-codegen -Dmodel=model_name

Integrating into Your Project

集成到您的项目中

Build the static library:
构建静态库:

复制代码
zig build lib -Dmodel=model_name -Dtarget={arch} -Dcpu={cpu}

Linking with CMake: 与 CMake 链接:

复制代码
target_link_libraries(your_project PUBLIC path/to/libzant.a)

Logging (Optional) 日志记录(可选)

To set a custom log function from your C code:
要从 C 代码设置自定义日志函数:

复制代码
extern void setLogFunction(void (*log_function)(uint8_t *string));

🏗️ Build System (build.zig)

🏗️ 构建系统 ( build.zig

Available Build Commands 可用的构建命令

Core Commands 核心命令
  • Standard build: 标准版本:

    复制代码
    zig build                                    # Build all targets
  • Run unit tests: 运行单元测试:

    复制代码
    zig build test --summary all                # Run all unit tests
  • Code generation: 代码生成:

    复制代码
    zig build codegen -Dmodel=model_name        # Generate code for specified model
  • Static library compilation:
    静态库编译:

    复制代码
    zig build lib -Dmodel=model_name            # Compile static library for deployment
Testing Commands 测试命令
  • Test generated library: 测试生成的库:

    复制代码
    zig build test-generated-lib -Dmodel=model_name    # Test specific generated model library
  • OneOp model testing: OneOp 模型测试:

    复制代码
    zig build test-codegen-gen                   # Generate oneOperation test models
    zig build test-codegen                       # Test all generated oneOperation models
  • ONNX parser testing: ONNX 解析器测试:

    复制代码
    zig build onnx-parser                        # Test ONNX parser functionality
Profiling & Performance 分析和性能
  • Build main executable for profiling:
    构建用于性能分析的主可执行文件:

    复制代码
    zig build build-main -Dmodel=model_name      # Build profiling target executable

Command-Line Options 命令行选项

**Target & Architecture Options

目标和架构选项**

  • -Dtarget=<arch>: Target architecture (e.g., thumb-freestanding, native)
    -Dtarget=<arch> :目标架构(例如、 thumb-freestanding native 、 )
  • -Dcpu=<cpu>: CPU model (e.g., cortex_m33, cortex_m4)
    -Dcpu=<cpu> :CPU 型号(例如、 cortex_m33 、) cortex_m4
Model & Path Options 模型和路径选项
  • -Dmodel=<name>: Model name (default: mnist-8)
    -Dmodel=<name> :模型名称(默认值: mnist-8
  • -Dmodel_path=<path>: Custom ONNX model path
    -Dmodel_path=<path> :自定义 ONNX 模型路径
  • -Dgenerated_path=<path>: Output directory for generated code
    -Dgenerated_path=<path> :生成代码的输出目录
  • -Doutput_path=<path>: Output directory for compiled library
    -Doutput_path=<path> :编译库的输出目录
Code Generation Options 代码生成选项
  • -Dlog=true|false: Enable detailed logging during code generation
    -Dlog=true|false :在代码生成期间启用详细日志记录
  • -Duser_tests=<path>: Specify custom user tests JSON file
    -Duser_tests=<path> :指定自定义用户测试 JSON 文件
  • -Dshape=<shape>: Input tensor shape
    -Dshape=<shape> :输入张量形状
  • -Dtype=<type>: Input data type (default: f32)
    -Dtype=<type> :输入数据类型(默认值: f32
  • -Dcomm=true|false: Generate code with comments
    -Dcomm=true|false :生成带注释的代码
  • -Ddynamic=true|false: Enable dynamic memory allocation
    -Ddynamic=true|false :启用动态内存分配
Testing Options 测试选项
  • -Dheavy=true|false: Run heavy computational tests
    -Dheavy=true|false :运行繁重的计算测试
  • -Dtest_name=<name>: Run specific test by name
    -Dtest_name=<name> :按名称运行特定测试
**Debug & Profiling Options

调试和分析选项**

  • -Dtrace_allocator=true|false: Use tracing allocator for debugging (default: true)
    -Dtrace_allocator=true|false :使用跟踪分配器进行调试(默认值: true
  • -Dallocator=<type>: Allocator type to use (default: raw_c_allocator)
    -Dallocator=<type> :要使用的分配器类型(默认值: raw_c_allocator

Common Usage Examples 常见使用示例

复制代码
# Generate code for MNIST model with logging
zig build codegen -Dmodel=mnist-1 -Dlog=true

# Build static library for ARM Cortex-M33
zig build lib -Dmodel=mnist-1 -Dtarget=thumb-freestanding -Dcpu=cortex_m33

# Test with heavy computational tests enabled
zig build test -Dheavy=true --summary all

# Generate code with custom paths and comments
zig build codegen -Dmodel=custom_model -Dmodel_path=my_models/custom.onnx -Dgenerated_path=output/ -Dcomm=true

# Build library with custom output location
zig build lib -Dmodel=mnist-1 -Doutput_path=/path/to/deployment/

# Run specific test
zig build test -Dtest_name=tensor_math_test

# Build profiling executable for performance analysis
zig build build-main -Dmodel=mnist-1 -Dtarget=native

五、软件下载

迅雷云盘

本文信息来源于GitHub作者地址:https://github.com/ZantFoundation/Z-Ant

相关推荐
四川兔兔1 分钟前
Pytorch 实战四 VGG 网络训练
人工智能·pytorch·python·深度学习·机器学习·回归·vgg网络
Sim time1 小时前
用AI从0开始量化交易-Anaconda环境(env)和缓存(pkg)更改储存位置
人工智能·python·conda
知识趣动1 小时前
AI入门启航:看见知识库的运行原理
人工智能
灵声讯1 小时前
开天社交大模型从7B到32B:趣丸科技如何以“情感浓度”破局AI社交体验
人工智能·科技·语言模型
struggle20251 小时前
torchmd-net开源程序是训练神经网络潜力
c++·人工智能·python·深度学习·神经网络
夜松云1 小时前
GoogLeNet:图像分类神经网络的深度剖析与实践
图像处理·人工智能·神经网络·分类·数据挖掘·卷积神经网络·分类算法
alex88862 小时前
电子制造智能化转型:MES如何解决工艺复杂、质量追溯与供应链协同
人工智能·科技·5g·云计算·社交电子·能源·制造
mubei-1232 小时前
深度学习的可解释性——SketchXAI:人类草图可解释性初探
人工智能·深度学习·可解释性
mailangduoduo2 小时前
基于双层注意力重加权 LSTM 的中文长文本谣言检测模型
人工智能·自然语言处理·文本分类·循环神经网络·长短期记忆网络
爆改模型2 小时前
【 CVPR2025】计算机视觉|CEM : 模型逆向工程?条件熵最大化来啦!
人工智能·计算机视觉