机器学习入门:决策树的欠拟合与过拟合

机器学习入门:决策树的欠拟合与过拟合

目标

学习如何优化决策树模型,避免欠拟合和过拟合问题,找到最佳的模型复杂度。

什么是欠拟合和过拟合?

  • 欠拟合(Underfitting):模型过于简单,无法捕捉数据中的重要模式
  • 过拟合(Overfitting) :模型过于复杂,记住了训练数据的噪声,在新数据上表现差

1. 数据准备

python 复制代码
# 导入必要的库
import pandas as pd
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor

# 加载爱荷华房价数据
iowa_file_path = '../input/home-data-for-ml-course/train.csv'
home_data = pd.read_csv(iowa_file_path)

# 创建目标变量 y
y = home_data.SalePrice

# 选择特征创建 X
features = ['LotArea', 'YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd']
X = home_data[features]

# 划分训练集和验证集
train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1)

2. 基准模型性能

让我们先看看没有限制的决策树表现如何:

python 复制代码
# 创建没有限制的决策树模型

iowa_model = DecisionTreeRegressor(random_state=1)

iowa_model.fit(train_X, train_y)

# 在验证集上做预测并计算MAE

val_predictions = iowa_model.predict(val_X)

val_mae = mean_absolute_error(val_predictions, val_y)

print("验证集 MAE: {:,.0f}".format(val_mae))

3. 控制模型复杂度

我们使用 max_leaf_nodes 参数来控制决策树的复杂度。叶子节点越少,模型越简单。

创建评估函数

python 复制代码
def get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y):

  """

  计算给定max_leaf_nodes参数下模型的平均绝对误差

  """

  model = DecisionTreeRegressor(max_leaf_nodes=max_leaf_nodes, random_state=0)

  model.fit(train_X, train_y)

  preds_val = model.predict(val_X)

  mae = mean_absolute_error(val_y, preds_val)

  return mae

4. 寻找最优参数

方法一:显式循环

python 复制代码
candidate_max_leaf_nodes = [5, 25, 50, 100, 250, 500]

scores = []

# 循环测试不同的max_leaf_nodes值

for max_leaf_nodes in candidate_max_leaf_nodes:

  mae = get_mae(max_leaf_nodes, train_X, val_X, train_y, val_y)

  scores.append(mae)

# 找到最小MAE对应的参数

best_score = min(scores)

best_index = scores.index(best_score)

best_tree_size = candidate_max_leaf_nodes[best_index]

print(f"最佳的 max_leaf_nodes: {best_tree_size}")

print(f"对应的 MAE: {best_score}")

方法二:字典推导式(简洁版)

python 复制代码
# 使用字典推导式的简洁写法

scores = {leaf_size: get_mae(leaf_size, train_X, val_X, train_y, val_y) for leaf_size in candidate_max_leaf_nodes}

best_tree_size = min(scores, key=scores.get)

print(f"最佳的 max_leaf_nodes: {best_tree_size}")

print(f"对应的 MAE: {scores[best_tree_size]}")

5. 训练最终模型

找到最优参数后,使用全部数据训练最终模型:

python 复制代码
# 使用最佳参数创建最终模型

final_model = DecisionTreeRegressor(max_leaf_nodes=best_tree_size, random_state=1)

# 使用全部数据训练

final_model.fit(X, y)

print("最终模型训练完成!")

6. 结果分析

不同参数下的性能表现

python 复制代码
# 可视化不同参数的性能

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 6))

plt.plot(list(scores.keys()), list(scores.values()), 'bo-')

plt.xlabel('Max Leaf Nodes')

plt.ylabel('Mean Absolute Error')

plt.title('模型复杂度 vs 验证误差')

plt.grid(True)

plt.show()

核心概念总结

偏差-方差权衡

  • 低 max_leaf_nodes(简单模型):高偏差,低方差 → 欠拟合
  • 高 max_leaf_nodes(复杂模型):低偏差,高方差 → 过拟合
  • 适中的 max_leaf_nodes:偏差和方差的良好平衡

最佳实践

  1. 使用验证集:永远不要用测试数据来选择参数
  2. 系统化搜索:测试多个参数值,找到最优解
  3. 最终训练:用全部可用数据训练最终模型
  4. 交叉验证:对于更可靠的结果,考虑使用交叉验证

下一步

这个方法同样适用于其他超参数:

  • min_samples_split:分割内部节点所需的最小样本数
  • min_samples_leaf:叶子节点的最小样本数
  • max_depth:树的最大深度
相关推荐
余俊晖6 分钟前
一套针对金融领域多模态问答的自适应多层级RAG框架-VeritasFi
人工智能·金融·rag
码农阿树15 分钟前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
丁浩6661 小时前
Python机器学习---2.算法:逻辑回归
python·算法·机器学习
B站_计算机毕业设计之家1 小时前
计算机毕业设计:Python农业数据可视化分析系统 气象数据 农业生产 粮食数据 播种数据 爬虫 Django框架 天气数据 降水量(源码+文档)✅
大数据·爬虫·python·机器学习·信息可视化·课程设计·农业
伏小白白白1 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场1 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链2 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
taxunjishu2 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
说私域2 小时前
基于多模态AI技术的传统行业智能化升级路径研究——以开源AI大模型、AI智能名片与S2B2C商城小程序为例
人工智能·小程序·开源
囚生CY2 小时前
【速写】优化的深度与广度(Adam & Moun)
人工智能·python·算法