使用tensorflow的线性回归的例子(九)

from future import absolute_import, division, print_function, unicode_literals

import numpy as np

import pandas as pd

import seaborn as sb

import tensorflow as tf

from tensorflow import keras as ks

from tensorflow.estimator import LinearRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, r2_score

print(tf.version)

"""## Load and configure the Boston Housing Dataset"""

boston_load = datasets.load_boston()

feature_columns = boston_load.feature_names

target_column = boston_load.target

boston_data = pd.DataFrame(boston_load.data, columns=feature_columns).astype(np.float32)

boston_data['MEDV'] = target_column.astype(np.float32)

boston_data.head()

"""## Checking the relation between the variables using Pairplot and Correlation Graph"""

sb.pairplot(boston_data, diag_kind="kde", height=3, aspect=0.6)

correlation_data = boston_data.corr()

correlation_data.style.background_gradient(cmap='coolwarm', axis=None)

"""## Descriptive Statistics - Central Tendency and Dispersion"""

stats = boston_data.describe()

boston_stats = stats.transpose()

boston_stats

"""## Select the required columns"""

X_data = boston_data[[i for i in boston_data.columns if i not in ['MEDV']]]

Y_data = boston_data[['MEDV']]

"""## Train Test Split"""

training_features , test_features ,training_labels, test_labels = train_test_split(X_data , Y_data , test_size=0.2)

print('No. of rows in Training Features: ', training_features.shape[0])

print('No. of rows in Test Features: ', test_features.shape[0])

print('No. of columns in Training Features: ', training_features.shape[1])

print('No. of columns in Test Features: ', test_features.shape[1])

print('No. of rows in Training Label: ', training_labels.shape[0])

print('No. of rows in Test Label: ', test_labels.shape[0])

print('No. of columns in Training Label: ', training_labels.shape[1])

print('No. of columns in Test Label: ', test_labels.shape[1])

stats = training_features.describe()

stats = stats.transpose()

stats

stats = test_features.describe()

stats = stats.transpose()

stats

"""## Normalize Data"""

def norm(x):

stats = x.describe()

stats = stats.transpose()

return (x - stats['mean']) / stats['std']

normed_train_features = norm(training_features)

normed_test_features = norm(test_features)

"""## Build the Input Pipeline for TensorFlow model"""

def feed_input(features_dataframe, target_dataframe, num_of_epochs=10, shuffle=True, batch_size=32):

def input_feed_function():

dataset = tf.data.Dataset.from_tensor_slices((dict(features_dataframe), target_dataframe))

if shuffle:

dataset = dataset.shuffle(2000)

dataset = dataset.batch(batch_size).repeat(num_of_epochs)

return dataset

return input_feed_function

train_feed_input = feed_input(normed_train_features, training_labels)

train_feed_input_testing = feed_input(normed_train_features, training_labels, num_of_epochs=1, shuffle=False)

test_feed_input = feed_input(normed_test_features, test_labels, num_of_epochs=1, shuffle=False)

"""## Model Training"""

feature_columns_numeric = [tf.feature_column.numeric_column(m) for m in training_features.columns]

linear_model = LinearRegressor(feature_columns=feature_columns_numeric, optimizer='RMSProp')

linear_model.train(train_feed_input)

"""## Predictions"""

train_predictions = linear_model.predict(train_feed_input_testing)

test_predictions = linear_model.predict(test_feed_input)

train_predictions_series = pd.Series([p['predictions'][0] for p in train_predictions])

test_predictions_series = pd.Series([p['predictions'][0] for p in test_predictions])

train_predictions_df = pd.DataFrame(train_predictions_series, columns=['predictions'])

test_predictions_df = pd.DataFrame(test_predictions_series, columns=['predictions'])

training_labels.reset_index(drop=True, inplace=True)

train_predictions_df.reset_index(drop=True, inplace=True)

test_labels.reset_index(drop=True, inplace=True)

test_predictions_df.reset_index(drop=True, inplace=True)

train_labels_with_predictions_df = pd.concat([training_labels, train_predictions_df], axis=1)

test_labels_with_predictions_df = pd.concat([test_labels, test_predictions_df], axis=1)

"""## Validation"""

def calculate_errors_and_r2(y_true, y_pred):

mean_squared_err = (mean_squared_error(y_true, y_pred))

root_mean_squared_err = np.sqrt(mean_squared_err)

r2 = round(r2_score(y_true, y_pred)*100,0)

return mean_squared_err, root_mean_squared_err, r2

train_mean_squared_error, train_root_mean_squared_error, train_r2_score_percentage = calculate_errors_and_r2(training_labels, train_predictions_series)

test_mean_squared_error, test_root_mean_squared_error, test_r2_score_percentage = calculate_errors_and_r2(test_labels, test_predictions_series)

print('Training Data Mean Squared Error = ', train_mean_squared_error)

print('Training Data Root Mean Squared Error = ', train_root_mean_squared_error)

print('Training Data R2 = ', train_r2_score_percentage)

print('Test Data Mean Squared Error = ', test_mean_squared_error)

print('Test Data Root Mean Squared Error = ', test_root_mean_squared_error)

print('Test Data R2 = ', test_r2_score_percentage)

相关推荐
醉方休1 天前
TensorFlow.js高级功能
javascript·人工智能·tensorflow
nandao1581 天前
springBoot 集成Neo4j 实战演示
java·spring boot·neo4j
Hooray111 天前
protege+Neo4j+前端可视化知识图谱项目(教育领域)
人工智能·知识图谱·neo4j
憨憨爱编程2 天前
机器学习-单因子线性回归
人工智能·机器学习·线性回归
心动啊1212 天前
tensorflow卷积层1——卷积和池化
人工智能·python·tensorflow
jie*2 天前
小杰机器学习高级(two)——极大似然估计、交叉熵损失函数
大数据·人工智能·机器学习·tensorflow·逻辑回归·数据库架构·sklearn
憨憨爱编程2 天前
机器学习-多因子线性回归
人工智能·机器学习·线性回归
一条数据库2 天前
大规模无人机检测数据集:11998张高质量图像,支持YOLOv8、COCO、TensorFlow多格式训练,涵盖飞机、无人机、直升机三大目标类别
yolo·tensorflow·无人机
用什么都重名3 天前
不同版本tensorflow推理报错解决方法
人工智能·python·tensorflow·librosa
2401_8979300612 天前
使用Docker轻松部署Neo4j图数据库
数据库·docker·neo4j