使用tensorflow的线性回归的例子(九)

from future import absolute_import, division, print_function, unicode_literals

import numpy as np

import pandas as pd

import seaborn as sb

import tensorflow as tf

from tensorflow import keras as ks

from tensorflow.estimator import LinearRegressor

from sklearn import datasets

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error, r2_score

print(tf.version)

"""## Load and configure the Boston Housing Dataset"""

boston_load = datasets.load_boston()

feature_columns = boston_load.feature_names

target_column = boston_load.target

boston_data = pd.DataFrame(boston_load.data, columns=feature_columns).astype(np.float32)

boston_data['MEDV'] = target_column.astype(np.float32)

boston_data.head()

"""## Checking the relation between the variables using Pairplot and Correlation Graph"""

sb.pairplot(boston_data, diag_kind="kde", height=3, aspect=0.6)

correlation_data = boston_data.corr()

correlation_data.style.background_gradient(cmap='coolwarm', axis=None)

"""## Descriptive Statistics - Central Tendency and Dispersion"""

stats = boston_data.describe()

boston_stats = stats.transpose()

boston_stats

"""## Select the required columns"""

X_data = boston_data[[i for i in boston_data.columns if i not in ['MEDV']]]

Y_data = boston_data[['MEDV']]

"""## Train Test Split"""

training_features , test_features ,training_labels, test_labels = train_test_split(X_data , Y_data , test_size=0.2)

print('No. of rows in Training Features: ', training_features.shape[0])

print('No. of rows in Test Features: ', test_features.shape[0])

print('No. of columns in Training Features: ', training_features.shape[1])

print('No. of columns in Test Features: ', test_features.shape[1])

print('No. of rows in Training Label: ', training_labels.shape[0])

print('No. of rows in Test Label: ', test_labels.shape[0])

print('No. of columns in Training Label: ', training_labels.shape[1])

print('No. of columns in Test Label: ', test_labels.shape[1])

stats = training_features.describe()

stats = stats.transpose()

stats

stats = test_features.describe()

stats = stats.transpose()

stats

"""## Normalize Data"""

def norm(x):

stats = x.describe()

stats = stats.transpose()

return (x - stats['mean']) / stats['std']

normed_train_features = norm(training_features)

normed_test_features = norm(test_features)

"""## Build the Input Pipeline for TensorFlow model"""

def feed_input(features_dataframe, target_dataframe, num_of_epochs=10, shuffle=True, batch_size=32):

def input_feed_function():

dataset = tf.data.Dataset.from_tensor_slices((dict(features_dataframe), target_dataframe))

if shuffle:

dataset = dataset.shuffle(2000)

dataset = dataset.batch(batch_size).repeat(num_of_epochs)

return dataset

return input_feed_function

train_feed_input = feed_input(normed_train_features, training_labels)

train_feed_input_testing = feed_input(normed_train_features, training_labels, num_of_epochs=1, shuffle=False)

test_feed_input = feed_input(normed_test_features, test_labels, num_of_epochs=1, shuffle=False)

"""## Model Training"""

feature_columns_numeric = [tf.feature_column.numeric_column(m) for m in training_features.columns]

linear_model = LinearRegressor(feature_columns=feature_columns_numeric, optimizer='RMSProp')

linear_model.train(train_feed_input)

"""## Predictions"""

train_predictions = linear_model.predict(train_feed_input_testing)

test_predictions = linear_model.predict(test_feed_input)

train_predictions_series = pd.Series([p['predictions'][0] for p in train_predictions])

test_predictions_series = pd.Series([p['predictions'][0] for p in test_predictions])

train_predictions_df = pd.DataFrame(train_predictions_series, columns=['predictions'])

test_predictions_df = pd.DataFrame(test_predictions_series, columns=['predictions'])

training_labels.reset_index(drop=True, inplace=True)

train_predictions_df.reset_index(drop=True, inplace=True)

test_labels.reset_index(drop=True, inplace=True)

test_predictions_df.reset_index(drop=True, inplace=True)

train_labels_with_predictions_df = pd.concat([training_labels, train_predictions_df], axis=1)

test_labels_with_predictions_df = pd.concat([test_labels, test_predictions_df], axis=1)

"""## Validation"""

def calculate_errors_and_r2(y_true, y_pred):

mean_squared_err = (mean_squared_error(y_true, y_pred))

root_mean_squared_err = np.sqrt(mean_squared_err)

r2 = round(r2_score(y_true, y_pred)*100,0)

return mean_squared_err, root_mean_squared_err, r2

train_mean_squared_error, train_root_mean_squared_error, train_r2_score_percentage = calculate_errors_and_r2(training_labels, train_predictions_series)

test_mean_squared_error, test_root_mean_squared_error, test_r2_score_percentage = calculate_errors_and_r2(test_labels, test_predictions_series)

print('Training Data Mean Squared Error = ', train_mean_squared_error)

print('Training Data Root Mean Squared Error = ', train_root_mean_squared_error)

print('Training Data R2 = ', train_r2_score_percentage)

print('Test Data Mean Squared Error = ', test_mean_squared_error)

print('Test Data Root Mean Squared Error = ', test_root_mean_squared_error)

print('Test Data R2 = ', test_r2_score_percentage)

相关推荐
却道天凉_好个秋2 小时前
Tensorflow数据增强(三):高级裁剪
人工智能·深度学习·tensorflow
twilight_4697 小时前
机器学习与模式识别——线性回归算法
算法·机器学习·线性回归
Coder_Boy_19 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
Rorsion1 天前
PyTorch实现线性回归
人工智能·pytorch·线性回归
骇城迷影1 天前
Makemore 核心面试题大汇总
人工智能·pytorch·python·深度学习·线性回归
子榆.2 天前
CANN 与主流 AI 框架集成:从 PyTorch/TensorFlow 到高效推理的无缝迁移指南
人工智能·pytorch·tensorflow
凯子坚持 c2 天前
CANN 生态中的模型压缩利器:深入 `quant-tool` 项目实现高效 INT8 部署
neo4j
小羊不会打字2 天前
CANN 生态中的模型安全加固:`secure-model-deploy` 项目实践指南
安全·neo4j
觅特科技-互站3 天前
陌讯AI视觉赋能政企园区:国家级高新区实现人流超限自动广播与工单闭环
人工智能·排序算法·线性回归
小小测试开发4 天前
UI自动化测试:CSS定位方式超详细解析(附实战示例)
css·ui·tensorflow