Unity HDRP + Azure IoT 工业设备监控系统实例
下面是一个完整的工业设备监控解决方案,结合Unity HDRP(高清渲染管线)的高质量可视化与Azure IoT的实时数据处理能力。
系统架构
传感器数据 控制指令 工业设备 Azure IoT Hub Azure Stream Analytics Azure Digital Twins Unity HDRP应用 混合现实设备 Web仪表盘
实施步骤
1. 设备接入与数据流
Azure IoT Hub配置:
csharp
// 创建设备连接字符串
var deviceClient = DeviceClient.CreateFromConnectionString(
"HostName=your-hub.azure-devices.net;DeviceId=device001;SharedAccessKey=...");
// 发送设备数据
var telemetryData = new {
deviceId = "press-machine-01",
temperature = 78.4,
vibration = 2.3,
status = "running",
timestamp = DateTime.UtcNow
};
var message = new Message(Encoding.UTF8.GetBytes(JsonConvert.SerializeObject(telemetryData)));
await deviceClient.SendEventAsync(message);
2. Azure Digital Twins 模型定义
设备数字孪生模型:
json
{
"@id": "dtmi:com:factory:IndustrialPress;1",
"@type": "Interface",
"displayName": "Industrial Press Machine",
"contents": [
{
"@type": "Property",
"name": "temperature",
"schema": "double"
},
{
"@type": "Property",
"name": "vibration",
"schema": "double"
},
{
"@type": "Property",
"name": "status",
"schema": "string"
},
{
"@type": "Relationship",
"name": "contains",
"target": "dtmi:com:factory:Motor;1"
}
]
}
3. Unity HDRP 场景搭建
设备可视化材质:
hlsl
// HDRP Shader Graph - 温度可视化着色器
Shader "HDRP/IoT/TemperatureVisualization"
{
Properties
{
_BaseColor("Base Color", Color) = (0,0.5,1,1)
_HotColor("Hot Color", Color) = (1,0,0,1)
_Temperature("Temperature", Range(0,100)) = 25
_EmissionIntensity("Emission Intensity", Range(0,10)) = 2
}
SubShader
{
Tags { "RenderType"="Opaque" }
HLSLINCLUDE
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/RenderPipeline/RenderPass/CustomPass/CustomPassCommon.hlsl"
ENDHLSL
Pass
{
Name "ForwardOnly"
Tags { "LightMode" = "ForwardOnly" }
HLSLPROGRAM
#pragma vertex vert
#pragma fragment frag
float _Temperature;
float3 _BaseColor;
float3 _HotColor;
float _EmissionIntensity;
struct appdata
{
float4 vertex : POSITION;
};
struct v2f
{
float4 pos : SV_POSITION;
};
v2f vert(appdata v)
{
v2f o;
o.pos = TransformWorldToHClip(v.vertex.xyz);
return o;
}
float4 frag(v2f i) : SV_Target
{
// 基于温度插值颜色
float t = saturate((_Temperature - 50) / 50.0);
float3 color = lerp(_BaseColor, _HotColor, t);
// 高温区域增加自发光
float emission = t * _EmissionIntensity;
return float4(color * (1 + emission), 1);
}
ENDHLSL
}
}
}
4. Unity 与 Azure Digital Twins 集成
数据同步脚本:
csharp
using Azure.DigitalTwins.Core;
using Azure.Identity;
using UnityEngine;
public class DigitalTwinSync : MonoBehaviour
{
private DigitalTwinsClient client;
public string deviceId = "press-machine-01";
public GameObject machineModel;
async void Start()
{
// 使用Azure AD认证
var credential = new DefaultAzureCredential();
client = new DigitalTwinsClient(
new Uri("https://your-twins-host.api.wus2.digitaltwins.azure.net"),
credential);
// 启动数据更新循环
StartCoroutine(UpdateDeviceState());
}
IEnumerator UpdateDeviceState()
{
while (true)
{
// 获取数字孪生数据
var twin = await client.GetDigitalTwinAsync<BasicDigitalTwin>(deviceId);
// 更新3D模型状态
UpdateMachineVisuals(twin.Value);
yield return new WaitForSeconds(1); // 每秒更新
}
}
void UpdateMachineVisuals(BasicDigitalTwin twin)
{
// 获取设备数据
float temperature = (float)twin.Contents["temperature"].Value;
float vibration = (float)twin.Contents["vibration"].Value;
string status = twin.Contents["status"].Value.ToString();
// 更新材质属性
Renderer renderer = machineModel.GetComponent<Renderer>();
Material mat = renderer.material;
mat.SetFloat("_Temperature", temperature);
// 根据振动强度调整动画速度
Animator animator = machineModel.GetComponent<Animator>();
animator.speed = vibration > 2.0f ? 1.5f : 1.0f;
// 状态指示灯
GameObject statusLight = machineModel.transform.Find("StatusLight").gameObject;
Light light = statusLight.GetComponent<Light>();
light.color = status == "error" ? Color.red :
status == "warning" ? Color.yellow : Color.green;
}
// 发送控制命令到设备
public async void SendMachineCommand(string command)
{
var update = new JsonPatchDocument();
update.AppendReplace("/status", command);
await client.UpdateDigitalTwinAsync(deviceId, update);
Debug.Log($"Sent command: {command}");
}
}
5. 实时报警系统
Unity中的报警处理:
csharp
using UnityEngine;
using TMPro;
public class AlertSystem : MonoBehaviour
{
public GameObject alertPanel;
public TextMeshProUGUI alertText;
public Transform[] machinePositions;
public void TriggerAlert(string message, string deviceId)
{
// 在UI上显示警报
alertPanel.SetActive(true);
alertText.text = $"{deviceId}: {message}";
// 在3D场景中定位设备
int machineIndex = System.Array.FindIndex(machinePositions,
t => t.name == deviceId);
if (machineIndex != -1)
{
// 创建警报标记
GameObject marker = Instantiate(alertMarkerPrefab);
marker.transform.position = machinePositions[machineIndex].position + Vector3.up * 3f;
// 启动警报动画
StartCoroutine(PulseMarker(marker));
}
}
IEnumerator PulseMarker(GameObject marker)
{
float duration = 2f;
Vector3 originalScale = marker.transform.localScale;
while (alertPanel.activeSelf)
{
float t = Mathf.PingPong(Time.time, duration) / duration;
float scale = Mathf.Lerp(0.8f, 1.2f, t);
marker.transform.localScale = originalScale * scale;
yield return null;
}
Destroy(marker);
}
}
6. 混合现实支持(HoloLens)
AR设备控制界面:
csharp
using Microsoft.MixedReality.Toolkit.UI;
using Microsoft.MixedReality.Toolkit.Input;
public class ARControlInterface : MonoBehaviour, IMixedRealityPointerHandler
{
public DigitalTwinSync twinSync;
void Start()
{
// 为控制按钮添加交互处理器
var buttons = GetComponentsInChildren<PressableButton>();
foreach (var button in buttons)
{
button.GetComponent<Interactable>().OnClick.AddListener(() =>
{
HandleButtonPress(button.name);
});
}
}
void HandleButtonPress(string buttonName)
{
switch(buttonName)
{
case "StartButton":
twinSync.SendMachineCommand("start");
break;
case "StopButton":
twinSync.SendMachineCommand("stop");
break;
case "EmergencyStop":
twinSync.SendMachineCommand("emergency_stop");
break;
}
}
// 实现指针接口以支持手势交互
public void OnPointerDown(MixedRealityPointerEventData eventData) { }
public void OnPointerUp(MixedRealityPointerEventData eventData) { }
public void OnPointerClicked(MixedRealityPointerEventData eventData)
{
// 点击设备时显示详细信息
if (eventData.Pointer.Result.CurrentPointerTarget.CompareTag("Machine"))
{
ShowMachineDetails(eventData.Pointer.Result.Details.Point);
}
}
void ShowMachineDetails(Vector3 position)
{
// 在设备上方显示信息面板
GameObject panel = Instantiate(detailsPanelPrefab);
panel.transform.position = position + Vector3.up * 1.5f;
panel.transform.LookAt(Camera.main.transform);
panel.transform.Rotate(0, 180, 0);
// 填充设备数据...
}
}
部署架构
Web Access Control Center Factory Azure Cloud MQTT OPC UA WebSocket MixedReality-WebRTC Power BI Web浏览器 Unity HDRP工作站 HoloLens 2 传感器 PLC控制器 Stream Analytics IoT Hub Digital Twins Azure Functions Cosmos DB
关键功能实现
1. 实时数据可视化仪表盘
csharp
using UnityEngine.UI;
public class MachineDashboard : MonoBehaviour
{
public Image temperatureGauge;
public Image vibrationGauge;
public Text statusText;
public Text efficiencyText;
public void UpdateDashboard(float temp, float vib, string status)
{
// 更新温度计
temperatureGauge.fillAmount = Mathf.Clamp(temp / 100f, 0, 1);
temperatureGauge.color = Color.Lerp(Color.green, Color.red, temp / 100f);
// 更新振动计
vibrationGauge.fillAmount = Mathf.Clamp(vib / 5f, 0, 1);
// 更新状态文本
statusText.text = status.ToUpper();
statusText.color = GetStatusColor(status);
// 计算并显示效率
float efficiency = CalculateEfficiency(temp, vib);
efficiencyText.text = $"EFFICIENCY: {efficiency:P0}";
}
Color GetStatusColor(string status)
{
switch(status.ToLower())
{
case "running": return Color.green;
case "idle": return Color.yellow;
case "maintenance": return new Color(1, 0.5f, 0); // 橙色
default: return Color.red;
}
}
float CalculateEfficiency(float temp, float vib)
{
// 效率计算算法
float tempFactor = Mathf.Clamp(1 - (Mathf.Max(0, temp - 70) / 30f, 0, 1);
float vibFactor = Mathf.Clamp(1 - vib / 4f, 0, 1);
return tempFactor * vibFactor;
}
}
2. 预测性维护分析
csharp
using Unity.Sentis;
public class PredictiveMaintenance : MonoBehaviour
{
private Model runtimeModel;
private IWorker engine;
private TensorFloat inputTensor;
void Start()
{
// 加载ONNX模型
runtimeModel = ModelLoader.Load("Assets/Models/predictive_maintenance.onnx");
engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, runtimeModel);
}
public float PredictFailureProbability(float[] sensorData)
{
// 准备输入数据
inputTensor = new TensorFloat(new TensorShape(1, 10), sensorData);
// 执行推理
engine.Execute(inputTensor);
// 获取输出
TensorFloat output = engine.PeekOutput() as TensorFloat;
float[] probabilities = output.ToReadOnlyArray();
// 返回故障概率
return probabilities[1]; // 索引1是故障概率
}
void OnDestroy()
{
inputTensor?.Dispose();
engine?.Dispose();
}
}
3. 历史数据回放系统
csharp
using System.Collections.Generic;
public class TimeMachine : MonoBehaviour
{
private List<DeviceState> timeline = new List<DeviceState>();
private bool isReplaying = false;
private float replaySpeed = 1f;
private int currentIndex = 0;
public void RecordState(DeviceState state)
{
timeline.Add(state);
// 保留最近24小时数据
if (timeline.Count > 86400) // 每秒一个记录
timeline.RemoveAt(0);
}
public void StartReplay(DateTime startTime, float speed = 1f)
{
currentIndex = timeline.FindIndex(s => s.timestamp >= startTime);
if (currentIndex >= 0)
{
isReplaying = true;
replaySpeed = speed;
StartCoroutine(ReplayTimeline());
}
}
IEnumerator ReplayTimeline()
{
while (isReplaying && currentIndex < timeline.Count - 1)
{
// 应用当前状态
ApplyState(timeline[currentIndex]);
// 等待到下一帧
yield return new WaitForSeconds(1f / replaySpeed);
currentIndex++;
}
isReplaying = false;
}
void ApplyState(DeviceState state)
{
// 更新设备状态
foreach (var machine in machines)
{
if (machine.deviceId == state.deviceId)
{
machine.SetState(state);
break;
}
}
// 更新UI时间线
timelineUI.SetTime(state.timestamp);
}
}
性能优化策略
1. 数据流优化
关键控制 状态更新 历史分析 原始数据 数据类型 实时WebSocket 1秒间隔MQTT Azure Timeseries Insights
2. Unity渲染优化
技术 | 实现方法 | 效果 |
---|---|---|
GPU实例化 | Graphics.DrawMeshInstanced |
减少80%绘制调用 |
LOD系统 | 多细节层次模型 | 复杂场景提升50%帧率 |
遮挡剔除 | HDRP Occlusion Culling | 减少不可见物体渲染 |
异步加载 | Addressable Assets | 无缝场景切换 |
3. 边缘计算集成
csharp
// Azure IoT Edge模块处理
public class EdgeProcessingModule : IEdgeModule
{
public async Task<MessageResponse> ProcessMessageAsync(Message message, object userContext)
{
// 解析设备数据
var data = JsonConvert.DeserializeObject<DeviceData>(Encoding.UTF8.GetString(message.Body));
// 本地实时分析
if (data.temperature > 90)
{
// 直接发送警报
var alert = new Message(Encoding.UTF8.GetBytes(
JsonConvert.SerializeObject(new {
deviceId = data.deviceId,
alert = "HIGH_TEMP",
value = data.temperature
})
);
await moduleClient.SendEventAsync("alerts", alert);
}
// 聚合数据发送到云端
var avgData = ComputeHourlyAverage(data);
var avgMessage = new Message(Encoding.UTF8.GetBytes(
JsonConvert.SerializeObject(avgData)
);
await moduleClient.SendEventAsync("averages", avgMessage);
return MessageResponse.Completed;
}
}
实际应用案例:汽车冲压工厂
系统指标
- 接入设备:32台冲压机
- 传感器:温度、振动、压力、位置
- 数据频率:200ms/次
- 延迟:从设备到Unity可视化 < 500ms
- 故障预测准确率:92%
实现功能
- 实时3D监控:冲压机状态可视化,异常设备高亮
- 混合现实维护:HoloLens显示设备内部结构,指导维修
- 质量分析:冲压件质量与设备参数关联分析
- 能耗优化:根据生产计划自动调整设备功率模式
- 数字孪生验证:在虚拟环境中测试参数调整效果
效益分析
指标 | 改进前 | 改进后 | 提升 |
---|---|---|---|
设备故障停机 | 12小时/月 | 2小时/月 | 83% |
维护成本 | $18,000/月 | $7,000/月 | 61% |
能源消耗 | 1.2MW | 0.9MW | 25% |
产品质量不良率 | 3.2% | 1.1% | 66% |
部署方案
硬件配置
组件 | 规格 | 数量 | 用途 |
---|---|---|---|
Unity工作站 | NVIDIA RTX A6000, 64GB RAM | 2 | 主控制台 |
HoloLens 2 | Snapdragon 850, 4GB RAM | 8 | 现场维护 |
Azure边缘节点 | Intel i7, 32GB RAM, NVIDIA T4 | 4 | 本地数据处理 |
工厂传感器网关 | ARM Cortex-A72, 4GB RAM | 32 | 设备接入 |
软件栈
- Unity版本:2022.3 LTS + HDRP 14.0
- Azure服务:IoT Hub, Digital Twins, Stream Analytics, Functions
- 数据库:Cosmos DB + Azure Time Series Insights
- 分析工具:Azure Machine Learning + Unity Sentis
- 通信协议:MQTT, OPC UA, WebSocket
该方案成功将传统工厂监控系统升级为沉浸式智能管理平台,通过Unity HDRP的高保真可视化和Azure IoT的实时数据处理能力,实现了设备状态的透明化管理和预测性维护。