多实例学习简介

多实例学习(Multiple Instance Learning, MIL)是一种弱监督学习方法,主要特点是在训练过程中,标签是赋予 "样本包(bag)" 而不是单个实例(instance)。

基本概念:

  • 实例(Instance):单个数据点,如一张图像的一个小块。

  • 包(Bag):由多个实例组成的集合。

  • 标签(Label):只对整个包有标签,包内实例没有单独标签。

典型假设(Standard MIL Assumption):

  • 如果一个包中至少存在一个正实例,则该包为正;

  • 如果包中所有实例都是负的,则该包为负。

应用场景:

  • 病理图像分析:整张切片为正例时,仅意味着某个区域有病变,而非所有区域;

  • 药物发现:某种化合物活性为正,并不意味着其所有构象都有效;

  • 图像分类:仅提供图像级标签,但图像中可能只有局部区域与标签相关。

主要方法:

  1. 基于实例选择的方法(如MI-SVM):尝试在包中找到关键的"正实例"。

  2. 嵌入方法(如Deep MIL):将整个包映射为一个向量,再进行分类。

  3. 注意力机制方法:为每个实例分配权重,自适应学习关键区域。

小结:

多实例学习解决了标签粒度不匹配的问题,适用于实例级难以标注但包级标签易获得的场景。随着深度学习的发展,MIL也被广泛用于弱监督学习、目标定位和医学图像分析等领域。


一句话理解:

找到正实例(或估计其贡献)是为了更好地构造"包"的表示,最终对整个包进行分类(正或负)。

  • 找到正实例 ≈ 找到对包分类结果影响最大的实例。

  • 找到后,通过聚合这些实例的特征,形成包的表征。

  • 然后再对包进行分类(正/负),与常规分类模型一样使用标准损失函数优化。

可类比理解为:

一张正例 Whole Slide Image 中,仅某些 patch 含癌变。通过 MIL,我们找到这些关键 patch,用它们构造整张图的表达向量,再判断这张图是否为阳性。

相关推荐
RPA中国几秒前
谷雨互动赵乾坤 | AI答案时代生存法则:从流量变迁到GEO实践
人工智能
paopaokaka_luck5 分钟前
基于SpringBoot+Vue的数码交流管理系统(AI问答、协同过滤算法、websocket实时聊天、Echarts图形化分析)
vue.js·人工智能·spring boot·websocket·echarts
youngfengying39 分钟前
身体活动(physical activity)---深度学习
人工智能·深度学习
START_GAME1 小时前
语音合成系统---IndexTTS2:环境配置与实战
人工智能·语音识别
2501_930799241 小时前
访答知识库#Pdf转word#人工智能#Al编辑器#访答RAG#企业知识库,个人知识库,本地知识库,访答编辑器,访答浏览器……
人工智能
max5006001 小时前
多GPU数据并行训练中GPU利用率不均衡问题深度分析与解决方案
人工智能·机器学习·分类·数据挖掘
老坛程序员1 小时前
Coze 与 n8n 深度对比:AI智能体平台与工作流自动化的核心博弈
运维·人工智能·自动化
AI人工智能+1 小时前
药品经营许可证识别技术:通过深度学习算法实现资质文件的自动化识别与核验
人工智能·深度学习·ocr·药品经营许可证识别
IT_陈寒1 小时前
Java性能调优:这5个被你忽略的JVM参数让你的应用吞吐量提升50%!
前端·人工智能·后端