多实例学习简介

多实例学习(Multiple Instance Learning, MIL)是一种弱监督学习方法,主要特点是在训练过程中,标签是赋予 "样本包(bag)" 而不是单个实例(instance)。

基本概念:

  • 实例(Instance):单个数据点,如一张图像的一个小块。

  • 包(Bag):由多个实例组成的集合。

  • 标签(Label):只对整个包有标签,包内实例没有单独标签。

典型假设(Standard MIL Assumption):

  • 如果一个包中至少存在一个正实例,则该包为正;

  • 如果包中所有实例都是负的,则该包为负。

应用场景:

  • 病理图像分析:整张切片为正例时,仅意味着某个区域有病变,而非所有区域;

  • 药物发现:某种化合物活性为正,并不意味着其所有构象都有效;

  • 图像分类:仅提供图像级标签,但图像中可能只有局部区域与标签相关。

主要方法:

  1. 基于实例选择的方法(如MI-SVM):尝试在包中找到关键的"正实例"。

  2. 嵌入方法(如Deep MIL):将整个包映射为一个向量,再进行分类。

  3. 注意力机制方法:为每个实例分配权重,自适应学习关键区域。

小结:

多实例学习解决了标签粒度不匹配的问题,适用于实例级难以标注但包级标签易获得的场景。随着深度学习的发展,MIL也被广泛用于弱监督学习、目标定位和医学图像分析等领域。


一句话理解:

找到正实例(或估计其贡献)是为了更好地构造"包"的表示,最终对整个包进行分类(正或负)。

  • 找到正实例 ≈ 找到对包分类结果影响最大的实例。

  • 找到后,通过聚合这些实例的特征,形成包的表征。

  • 然后再对包进行分类(正/负),与常规分类模型一样使用标准损失函数优化。

可类比理解为:

一张正例 Whole Slide Image 中,仅某些 patch 含癌变。通过 MIL,我们找到这些关键 patch,用它们构造整张图的表达向量,再判断这张图是否为阳性。

相关推荐
Sui_Network1 小时前
Walrus 与 Pipe Network 集成,提升多链带宽并降低延迟
人工智能·web3·区块链·智能合约·量子计算
攻城狮7号1 小时前
GPT-OSS重磅开源:当OpenAI重拾“开放”初心
人工智能·openai·开源大模型·gpt-oss
我不是小upper1 小时前
什么是键值缓存?让 LLM 闪电般快速
人工智能·缓存·llm
2zcode1 小时前
基于Matlab图像处理的黄豆自动计数系统设计与实现
图像处理·人工智能·matlab
金智维科技官方2 小时前
常见的大模型分类
人工智能·算法·ai·语言模型·数据挖掘
TY-20252 小时前
五、CV_ResNet
人工智能
♡喜欢做梦2 小时前
【AI】从零开始的文本分类模型实战:从数据到部署的全流程指南
人工智能·ai·自然语言处理
WeiJingYu.2 小时前
Opencv-管理图片
人工智能·opencv·计算机视觉
shuju_dajiwang2 小时前
数据大集网:重构企业贷获客生态的线上获客新范式
人工智能