二、深度学习——损失函数

二、损失函数

  • 损失函数定义:损失函数是用来衡量模型参数的质量的函数,衡量方式是比较网络输出和真实输出的差异

  • 别名:损失函数(loss function),代价函数(cost function),目标函数(objective function),误差函数(error function)

1.多分类损失函数

  • 在多分类任务通常使用softmax将logits转换为概率的形式,所以多分类的交叉熵损失也叫做softmax损失,它的计算方法是:L=−∑i=1nyilog(S(fθ(xi)))L=-\sum_{i = 1}^ny_ilog(S(f_\theta(x_i)))L=−∑i=1nyilog(S(fθ(xi)))
    • yiy_iyi:真实值标签(one_hot热编码)
    • f(x)f(x)f(x)是样本属于某一类别的预测分数
    • S(fθ(xi))S(f_\theta(x_i))S(fθ(xi)):网络输出结果的概率值
    • i=1i=1i=1:样本个数
  • 在pytorch中使用nn.CrossEntropyLoss()实现

2.二分类任务损失函数

  • 在处理二分类任务时, 使用sigmoid激活函数,则损失函数也会进行相应的调整,使用二分类的交叉熵损失函数:L=−ylogy^−(1−y)log(1−y^)L = -ylog\hat y-(1-y)log(1-\hat y)L=−ylogy^−(1−y)log(1−y^)
    • y是样本x中属于某一个类别的真实概率
    • y^\hat yy^是严格不能属于某一类别的预测概率
    • LLL用来衡量真实值y与预测值y^\hat yy^之间的差异性的损失结果
  • 在pytorch中使用nn.BCELoss()实现

3.回归任务损失函数-MAE损失函数

  • Mean absolute loss(MAE)也被称为L1 Loss,是以绝对误差作为距离,损失函数公式:L=1n∑i=1n∣yi=fθ(xi)∣L = \frac{1}{n}\sum_{i = 1}^n|y_i=f_\theta(x_i)|L=n1∑i=1n∣yi=fθ(xi)∣
  • 特点:
    • 由于L1 loss具有稀疏性,为了惩罚较大的值,因此常常将其作为正则项添加到其他loss中作为约束;
    • L1 loss的最大问题时梯度在零点不平滑,导致会跳过极小值(最优解)

4.回归任务损失函数-MSE损失函数

  • Mean Squared Loss/Quadratic Loss(MSE loss)也被称作L2 loss,或欧氏距离,它以误差的平方和的均值作为距离损失函数公式:L=1n∑i=1n(yi−fθ(xi))2L = \frac{1}{n}\sum_{i = 1}^n(y_i-f_{\theta(x_i)})^2L=n1∑i=1n(yi−fθ(xi))2
  • 特点:
    • L2 loss也常常作为正则项
    • 当预测值与目标值相差很大时,梯度容易爆炸(则尽量不会使用这种损失函数)

5.回归任务损失函数-smooth L1损失函数

  • smooth L1说的是光滑之后的L1,损失函数公式为:smoothL1(x)={0.5x2if ∣x∣<1∣x∣−0.5otherwise\text{smooth}_{L_1}(x) = \begin{cases} 0.5x^2 & \text{if } \vert x \vert < 1 \\ \vert x \vert - 0.5 & \text{otherwise} \end{cases}smoothL1(x)={0.5x2∣x∣−0.5if ∣x∣<1otherwise
    • 其中,x=f(x)−yx = f(x)-yx=f(x)−y为真实值与预测值的差值
  • 从图像中可以看出,该函数实际上就是一个分段函数
    • 在[−1,1][-1, 1][−1,1]之间实际上就是L2损失,这样解决了L1的不光滑问题
    • 在[−1,1][-1, 1][−1,1]区间外,实际上就是L1损失,这样就解决了离群点梯度爆炸的问题
相关推荐
wjykp几秒前
part1~2 神经网络基础
人工智能·深度学习·神经网络
张较瘦_3 分钟前
[论文阅读] AI+ | GenAI重塑智慧图书馆:华东师大实践AI虚拟馆员,解放馆员聚焦高价值任务
论文阅读·人工智能
Light601 小时前
数据模型全解:从架构之心到AI时代的智慧表达
人工智能·架构·数据模型·三层架构·数仓建模·ai辅助·业务翻译
链上日记4 小时前
WEEX出席迪拜区块链生活2025,担任白金赞助商
人工智能·区块链·生活
灵途科技6 小时前
灵途科技亮相NEPCON ASIA 2025 以光电感知点亮具身智能未来
人工智能·科技·机器人
文火冰糖的硅基工坊7 小时前
[人工智能-大模型-125]:模型层 - RNN的隐藏层是什么网络,全连接?还是卷积?RNN如何实现状态记忆?
人工智能·rnn·lstm
IT90908 小时前
c#+ visionpro汽车行业,机器视觉通用检测程序源码 产品尺寸检测,机械手引导定位等
人工智能·计算机视觉·视觉检测
Small___ming8 小时前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
Ro Jace8 小时前
机器学习、深度学习、信号处理领域常用符号速查表
深度学习·机器学习·信号处理
渔舟渡简8 小时前
机器学习-回归分析概述
人工智能·机器学习