什么是RAG(Retrieval-Augmented Generation)?一文读懂检索增强生成

什么是RAG?

RAG是一种结合文档检索(Retrieval)与语言模型生成(Generation)的技术,它的核心思想是:先查资料,再作答

RAG是"知识"和"大模型"的桥梁。

与传统LLM(Large language model,大型语言模型,如chartgpt)不同,RAG不完全依赖模型内部知识,而是将用户的问题与一个外部知识库结合,通过检索获取相关文档,再交由语言模型生成回答。

为什么会有RAG?

RAG的出现,是为了解决传统打语言模型(LLM)在真实应用中的三大痛点:

  1. 知识截止问题:LLM的知识固定在训练时的数据(如GPT-3.5截止到2021年),无法回答新的事实、最新的政策、技术文档更新等问题
  2. 幻觉(Hallucination):LLM可能编造事实,当模型遇到知识空白时,它会"自洽的胡说八道",表面看似合理,实则错误
  3. 无法访问私有知识:无法访问公司内部知识、专属文档、个人数据等非公开内容

RAG的优势

功能 说明
外部知识接入 实时连接知识库,让模型不止靠记忆
提升问答可信度 基于真实内容作答,减少幻觉
支持复杂问答 多文档融合后,能支持长文档或跨文档问答
可快速迭代 只需要更新知识库,无需重复训练模型
企业智能化 支撑内部问答、助手、客服等应用场景

RAG的典型应用场景

  • 客户服务助手
  • 金融文档的自动文档
  • 企业文档助手,客服机器人
  • 医学指南、病例支持

RAG工作流程

如何搭建一个简单的RAG系统

工具选型(可用):

  • 文档向量化:OpenAI Embedding API
  • 向量数据库:FAISS
  • 生成模型(选择已有模型):OpenAI GPT
  • 框架推荐:LangChain、LlamIndex、Haystack

步骤概览:

  1. 文档预处理(切片、清洗)
  2. 文本向量化并存入数据库
  3. 接收用户问题 -> 转成向量 -> 检索相似片段
  4. 将检索内容 + 问题作为Prompt输出LLM生成回答

参考文章

下一步计划

搭建一个软考相关RAG系统。

相关推荐
飞哥数智坊8 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三8 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯9 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet11 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算11 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心12 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar13 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai13 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI14 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear15 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp