使用YOLOv11实现水果类别检测:从数据到模型训练的全过程

项目背景

在日常生活中,水果的类别识别直接影响库存管理和质量控制。传统检测依赖人工,效率低下且主观。通过计算机视觉,我们可以自动化这个过程。YOLO系列模型以其速度和准确性闻名,这次我使用YOLOv11n进行训练,目标是检测31种水果类别,包括苹果、香蕉、橙子等。

数据集来源于公开来源,图像标注为YOLO格式,包含训练、验证和测试集。nc=31,names包括'fresh_apple'到'rotten_tomato'等。

方法步骤

  1. 数据准备:数据集已准备好,包含标注图像。
  1. 模型训练:使用训练脚本,配置YOLO数据。训练参数:epochs=50, batch=16, imgsz=640。

    以下是训练脚本的主要代码:

    python 复制代码
    from ultralytics import YOLO
    import os
    import glob
    import torch
    
    def main():
        model = YOLO('models/yolo11n.pt')
        yaml_path = 'data/data.yaml'
        results = model.train(data=yaml_path, epochs=50, batch=16, imgsz=640, name='yolo11n_fruit', project='fruit_results')
        print("Training completed. Results saved in:", results.save_dir)
    
    if __name__ == '__main__':
        main()

    训练命令:python train_fire_smoke_tassel.py

    结果保存在fruit_results/yolo11n_fruit_20250716_210401

  1. 模型验证 :使用test_saved_model.py验证,加载best.pt模型。

    以下是验证脚本的主要代码:

    python 复制代码
    from ultralytics import YOLO
    import os
    import glob
    
    def main():
        yaml_path = 'data/data.yaml'
        results_dir = 'fruit_results'
        latest_run = max(glob.glob(os.path.join(results_dir, 'yolo11n_fruit_*')), key=os.path.getmtime)
        model_path = os.path.join(latest_run, 'weights', 'best.pt')
        model = YOLO(model_path)
        metrics = model.val(data=yaml_path)
        print(f"Validation metrics: {metrics}")
    
    if __name__ == '__main__':
        main()

    关键指标:

    • mAP50: 0.709
    • mAP50-95: 0.421
    • Precision: 0.675
    • Recall: 0.715






结果分析

模型在验证集上表现不错,mAP50达0.709,表示中等难度下的检测准确。Recall较高,意味着漏检少,适合实际应用。但mAP50-95较低,说明小目标或复杂背景需优化。

预测示例:

未来改进

  • 增加数据增强,提升鲁棒性。
  • 尝试更大模型如YOLOv11m。
  • 部署到移动端,实现实时检测。
相关推荐
neardi临滴科技5 分钟前
从算法逻辑到芯端落地:YOLO 目标检测的进化与瑞芯微实践
算法·yolo·目标检测
mahtengdbb115 小时前
YOLOv10n-ADown改进实现路面裂缝与坑洼检测_计算机视觉_目标检测_道路维护_智能检测系统
yolo·目标检测·计算机视觉
音沐mu.18 小时前
【46】骰子数据集(有v5/v8模型)/YOLO骰子点数检测
yolo·目标检测·数据集·骰子数据集·骰子点数检测
2501_9361460420 小时前
YOLOv8轻量级改进:slimneck-prune技术实现番茄大小分选与成熟度识别
yolo
AI小怪兽20 小时前
轻量、实时、高精度!MIE-YOLO:面向精准农业的多尺度杂草检测新框架 | MDPI AgriEngineering 2026
开发语言·人工智能·深度学习·yolo·无人机
Lun3866buzha1 天前
【目标检测】厨房场景目标物检测与识别-YOLOv5改进版_HSPAN_DySample实战
yolo·目标检测·目标跟踪
ASF1231415sd1 天前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
AI小怪兽1 天前
基于YOLOv13的汽车零件分割系统(Python源码+数据集+Pyside6界面)
开发语言·python·yolo·无人机
ASD125478acx2 天前
多类型孢子与真菌的智能识别与分类系统YOLO模型优化方法
yolo·目标跟踪·分类
2501_936146042 天前
【计算机视觉系列】:基于YOLOv8-RepHGNetV2的鱿鱼目标检测模型优化与实现
yolo·目标检测·计算机视觉