Matrix Theory study notes[3]

文章目录

linear space

  1. let V is a non-empty set which has elements such as a,b,c and so on,All the elements in V are vector. let K is a number field consisted of number such as α , β , σ \alpha,\beta , \sigma α,β,σ and so on.
  • to define an operation of addition that there is a only sum a + b ∈ V a+b \in V a+b∈V when a , b ∈ V a,b \in V a,b∈V
  • a + b + c = a + ( b + c ) a+b+c=a+(b+c) a+b+c=a+(b+c)
  • a + b = b + a a+b=b+a a+b=b+a
  • the zero element exists ,which make a + 0 = a a+0=a a+0=a
  • there is a negative element . for every a ∈ V a \in V a∈V the existing of vector b b b result in a + b = 0 a+b=0 a+b=0, b b b is the negative element of a a a, b = − a b=-a b=−a.
  • the scalar multiplication is defined in set V.for a ∈ V , α ∈ K a \in V,\alpha \in K a∈V,α∈K,the only α a ∈ V \alpha a \in V αa∈V and has the following properties:
    • α ( a + b ) = α a + α b \alpha(a+b)=\alpha a+ \alpha b α(a+b)=αa+αb
    • ( α + β ) a = α a + β a (\alpha+\beta)a=\alpha a+\beta a (α+β)a=αa+βa
    • α ( β a ) = ( α β ) a \alpha(\beta a)=(\alpha \beta)a α(βa)=(αβ)a
    • 1 a = a 1 a=a 1a=a
      the above sistuations indentifies that the V is called as linear space on number field K.
  1. we try to construct a linear space that is V = { ( 2 x , 2 x + 1 ) ∣ x ∈ N } V=\{(2x,2x+1)|x \in \mathbb{N}\} V={(2x,2x+1)∣x∈N} .
  • let a , b ∈ V a,b \in V a,b∈V,the sum of a and b , a + b ∈ V a+b \in V a+b∈V
    ( 2 a , 2 a + 1 ) + ( 2 b , 2 b + 1 ) = ( 2 ( a + b ) , 2 ( a + b ) + 1 ) (2a,2a+1)+(2b,2b+1)=(2(a+b),2(a+b)+1) (2a,2a+1)+(2b,2b+1)=(2(a+b),2(a+b)+1)
  • it is glaringly obvious that a + b = b + a a+b=b+a a+b=b+a .
  • the zero element exists ,which is ( 0 , 0 ) (0,0) (0,0).
  • the negative element exists,which is (-2a,-2a-1) for the element (2a,2a+1).
  • the scalar multiplication can be defined as follows.
    α ∈ R , α ( 2 a , 2 a + 1 ) = ( 2 α a , 2 α a + 1 ) ∈ V \alpha \in \mathbb{R},\alpha (2a,2a+1) =(2\alpha a,2\alpha a+1)\in V α∈R,α(2a,2a+1)=(2αa,2αa+1)∈V
  • α ( ( 2 a , 2 a + 1 ) + ( 2 b , 2 b + 1 ) ) = α ( 2 a , 2 a + 1 ) + α ( 2 b , 2 b + 1 ) \alpha((2a,2a+1) +(2b,2b+1) )=\alpha(2a,2a+1)+\alpha(2b,2b+1) α((2a,2a+1)+(2b,2b+1))=α(2a,2a+1)+α(2b,2b+1)
  • ( α + β ) ( 2 a , 2 a + 1 ) = α ( 2 a , 2 a + 1 ) + β ( 2 a , 2 a + 1 ) (\alpha+\beta)(2a,2a+1) =\alpha (2a,2a+1) +\beta (2a,2a+1) (α+β)(2a,2a+1)=α(2a,2a+1)+β(2a,2a+1)
  • α ( β a ) = ( α + β ) a \alpha(\beta a)=(\alpha+\beta)a α(βa)=(α+β)a
  • 1 a = a 1a=a 1a=a

references

  1. 《矩阵论》
相关推荐
愚公搬代码8 小时前
【愚公系列】《AI+直播营销》015-直播的选品策略(设计直播产品矩阵)
人工智能·线性代数·矩阵
paixingbang11 小时前
2026短视频矩阵服务商评测报告 星链引擎、河南云罗、数阶智能
大数据·线性代数·矩阵
scott19851211 小时前
NVIDIA GPU内部结构:高性能矩阵乘法内核剖析
线性代数·矩阵·gpu·nvidia·cuda
victory04312 天前
pytorch 矩阵乘法和实际存储形状的差异
人工智能·pytorch·矩阵
todoitbo2 天前
从零搭建鲲鹏 HPC 环境:从朴素矩阵乘法到高性能实现
线性代数·矩阵·鲲鹏·昇腾
lingzhilab2 天前
零知IDE——基于STMF103RBT6结合PAJ7620U2手势控制192位WS2812 RGB立方体矩阵
c++·stm32·矩阵
你要飞2 天前
Part 2 矩阵
笔记·线性代数·考研·矩阵
一条大祥脚2 天前
26.1.2 两个数的数位dp 分段快速幂 dp预处理矩阵系数
线性代数·矩阵
Dream it possible!3 天前
LeetCode 面试经典 150_二分查找_搜索二维矩阵(112_74_C++_中等)
leetcode·面试·矩阵
AI科技星3 天前
电磁耦合常数Z‘的第一性原理推导与严格验证:张祥前统一场论的几何基石
服务器·人工智能·线性代数·算法·矩阵