什么是 ELK/Grafana

ELK

Data Flow in ELK Stack: Logstash (Collect & Transform) → Elasticsearch (Store & Search) → Kibana (Visualize)

Elasticsearch

Explore Elasticsearch Query DSL

What is Elasticsearch?

Elastic (formerly Elasticsearch) is a suite of open-source tools for search, analytics, and data visualization, built around the core Elasticsearch engine. It's widely used for:

  • Full-text search: like Google for your data.
  • Log and metric analysis: centralized logging with the ELK Stack.
  • Business analytics: dashboard, trends, machine learning.

Elasticsearch enables you to build powerful search experiences for websites, applications, and enterprise data using Elastic's unified platform.

How to use Elasticsearch?

sql 复制代码
GET /_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "title":   "Search"        }},
        { "match": { "content": "Elasticsearch" }}
      ],
      "filter": [
        { "term":  { "status": "published" }},
        { "range": { "publish_date": { "gte": "2015-01-01" }}}
      ]
    }
  }
}
  • Elasticsearch's native interface is HTTP-based, and requests/responses are typically in JSON.
  • Elasticsearch provides official clients for multiple languages, which handle JSON internally.
  • Tools with non-json interfaces: Kibana query language(KQL), SQL(not natively) interface, command line tools.
  • Graphical interfaces: Kibana dev tools, elastic search head(plugin).
  • ETL tools: Logstash, beats.

Logstash

Try the Logstash Quick Start

What is Logstash?

Logstash is an open-source data processing pipeline tool developed by Elastic. It ingests, transforms, and ships data from various sources (logs, databases, APIs) to destinations like Elasticsearch, databases, or cloud storage.

How to use Logstashs?

A Logstashs pipeline has 3 stages: Input → Filter → Output.

Example config file (logstash.conf):

ruby 复制代码
input {
  file {
    path => "/var/log/nginx/access.log"  # Read Nginx logs
    start_position => "beginning"
  }
}

filter {
  grok {
    match => { "message" => "%{COMBINEDAPACHELOG}" }  # Parse log format
  }
  date {
    match => [ "timestamp", "dd/MMM/yyyy:HH:mm:ss Z" ]  # Fix timestamp
  }
}

output {
  elasticsearch {
    hosts => ["http://localhost:9200"]  # Send to Elasticsearch
    index => "nginx-logs-%{+YYYY.MM.dd}"
  }
}

Kibana

What is Kibana?

Kibana is the visualization and management UI for the Elastic Stack.

Kibana vs. Kusto

  • Kusto KQL: Used in Microsoft's ecosystem (Azure). Kusto is a cloud-based data analytics engine by MS (Azure Data Explorer).
  • Kibana KQL: Used in Elastic's ecosystem (Kibana). Kibana is a visualization/dashboard tool for Elasticsearch (part for ELK stack).

How to use Kibana?

Grafana

Explore Grafana Labs Tutorials

What is Grafana?

Grafana is an open-source dashboard and visualization tool designed for monitor and analyzing time-series data. It connect to multiple data sources (like Elasticsearsh, MySQL, stc.) and lets you to create interactive dashboards with charts, graphs, and alerts.

Grafana vs. Kibana

  • Grafana is better for time-series metrics. e.g. infrastructure monitoring (CPU, network)

  • Kibana excels at log exploration.

    Logs → Logstash/Beats → Elasticsearch → Kibana (logs)
    Metrics → Prometheus → Grafana (metrics)

How to use Grafana?

Try the Grafana Playground (pre-built demos).

相关推荐
oMcLin13 小时前
如何在 Rocky Linux 8.7 上通过 Prometheus 与 Grafana 结合,提升大规模容器环境的监控与性能分析?
linux·grafana·prometheus
飞翔沫沫情20 小时前
Prometheus 监控 ESXi 实战
grafana·prometheus·esxi·vcenter 监控·vsphere 监控
一只懒鱼a2 天前
安装ELK
elk
oMcLin2 天前
如何在Rocky Linux 8.5上部署并优化Jenkins流水线,支持跨平台CI/CD自动化与容器化构建?
linux·ci/cd·jenkins
无心水2 天前
【分布式利器:腾讯TSF】7、TSF高级部署策略全解析:蓝绿/灰度发布落地+Jenkins CI/CD集成(Java微服务实战)
java·人工智能·分布式·ci/cd·微服务·jenkins·腾讯tsf
goodlook01232 天前
监控平台搭建-日志-alloy篇(八)
grafana·prometheus
goodlook01233 天前
监控平台搭建-日志-springboot直接推送loki篇(九)
java·spring boot·后端·grafana
记得开心一点嘛3 天前
Elasticsearch
运维·jenkins
oMcLin3 天前
如何在 Ubuntu 22.04 上部署并优化 Jenkins 2.x 流水线,提升持续集成与自动化测试的效率?
ubuntu·ci/cd·jenkins
better_liang3 天前
每日Java面试场景题知识点之-ELK日志分析
java·elk·微服务·面试题·日志分析·企业级开发