中国计算机学会(CCF)推荐学术会议-A(数据库/数据挖掘/内容检索):ACM KDD 2026

ACM KDD 2026

KDD is the premier Data Science and AI conference, hosting both a Research and an Applied Data Science Track. The conference will take place from August 9 to 13, 2026, in Jeju, Korea. KDD has two submission cycles per year. This call details the CFP for the first cycle and invites submissions for both the Research and the Applied Data Science Track. An additional Datasets and Benchmarks track call will only be issued in the second cycle along with the other tracks.

所属领域:数据库/数据挖掘/内容检索

CCF推荐:A

录用率:20%(2024年)

时间地点:2026年8月9日-济州·韩国

大会征文

Foundations of Knowledge Discovery and Data Science. Submissions are invited to discuss core models, algorithms, and theoretical insights for knowledge discovery. Topics may include data-driven learning and structured knowledge extraction, including supervised, unsupervised, semi-supervised, and self-supervised learning, classification, regression, clustering, and dimensionality reduction; model selection and optimization; probabilistic and statistical methods (e.g., Bayesian inference, graphical models); matrix and tensor methods; structured and relational learning from data.

Modern AI and Big Data. Submissions are invited to elaborate on the intersection of AI and massive data repositories. Topics may include deep representation learning, meta-learning, in-context learning, prompt engineering, continual learning, few-shot adaptation, reinforcement learning, generation, and reasoning, including generative models (e.g., GANs, VAEs), large language models (LLMs), and multimodal foundation and frontier models operating on big data; AI's role in emergent reasoning, automated insight generation, and scientific discovery, including knowledge graph construction, hypothesis generation, neural-symbolic integration, and deriving novel concepts from large complex data.

Trustworthy and Responsible Data Science. Submissions are invited to feature techniques and frameworks that ensure responsible data use, management, and analysis. Topics may include data security, data privacy, data transparency, accountability in data-driven systems, privacy-preserving learning, adversarial robustness, interpretability and explainability of models, decision support visualization, fairness in data mining, ethical data processing, algorithmic auditing, and frameworks for responsible AI development and deployment.

Systems for Data Science and Scalable AI. Submissions that detail new architectures, systems, and infrastructures for large-scale data analysis and machine learning (e.g., distributed computing, federated learning, cloud-based systems) are invited. Topics may include efficient approaches to support high-volume data analysis, streaming, sampling, and summarization, data integration, transformation, and cleaning at scale, and data mining and machine learning for systems---machine learning for database management, learning device placement, orchestration, and scheduling of computational and data workflows.

Data Science Applications. Submissions are invited for innovative data science and artificial intelligence (AI) applications. Topics may include methods for analyzing scientific, social science, medical, and legal data, as well as time series, text, graphs, Internet of Things (IoT) data, and more. We also welcome contributions on recommender systems and bioinformatics. New directions that push the boundaries of data science applications are of particular interest, such as quantum data science, including algorithms and information-theoretic approaches for quantum machine learning and data processing in quantum systems.

相关推荐
却道天凉_好个秋3 分钟前
计算机视觉(九):图像轮廓
人工智能·opencv·计算机视觉·图像轮廓
爱读源码的大都督9 分钟前
Java已死?别慌,看我如何用Java手写一个Qwen Code Agent,拯救Java
java·人工智能·后端
机器之心11 分钟前
国内外AI大厂重押,初创梭哈,谁能凭「记忆」成为下一个「DeepSeek」?
人工智能·openai
项目題供诗25 分钟前
Hadoop(八)
大数据·hadoop·分布式
时序之心31 分钟前
覆盖Transformer、GAN:掩码重建正在重塑时间序列领域!
人工智能·深度学习·生成对抗网络·transformer·时间序列
机器之心38 分钟前
OpenAI罕见发论文:我们找到了AI幻觉的罪魁祸首
人工智能·openai
aneasystone本尊1 小时前
学习 GraphRAG 四大搜索策略
人工智能
在未来等你1 小时前
Kafka面试精讲 Day 7:消息序列化与压缩策略
大数据·分布式·面试·kafka·消息队列
在未来等你1 小时前
Kafka面试精讲 Day 10:事务机制与幂等性保证
大数据·分布式·面试·kafka·消息队列
武子康1 小时前
大数据-91 Spark广播变量:高效共享只读数据的最佳实践 RDD+Scala编程
大数据·后端·spark