vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理

什么是 Speculative Decoding?

简单来说,Speculative Decoding 就是让"小模型先猜,大模型来验证"

传统语言模型是一个 token 一个 token 地生成,这种逐步采样方式在大模型上非常慢。而投机采样的流程如下:

  1. 草稿模型(Draft Model):使用一个小模型快速生成一批"候选 token"。

  2. 主模型(Target Model):用大模型并行验证这些 token,检查是否匹配其预测。

  3. 对齐则接受,错了则回退:如果草稿部分预测正确,就省去大模型逐个生成的时间。

这一策略显著减少了大模型的推理步骤,大幅提升了吞吐量和响应速度。

为什么能加速?

因为大语言模型最耗时的部分就是每一步 token 的推理和上下文缓存管理。而投机采样允许多个 token 批量处理,减少了 GPU kernel 启动、KV Cache 写入等重复操作。

根据 OpenAI 和其他团队的测试,Speculative Decoding 可带来 1.5x ~ 2.5x 的加速效果,在某些配置下甚至更多。

vLLM 中的 Speculative Decoding 是如何实现的?

vLLM 从 v0.3 开始支持 Speculative Decoding,并且通过一个简单的命令行参数就可以启用它。

启动示例

假设你希望用一个 13B 的大模型推理,同时用 7B 的小模型作为草稿模型,命令如下:

复制代码
python3 -m vllm.entrypoints.openai.api_server \
  --model meta-llama/Llama-2-13b-chat-hf \
  --speculative_model mistralai/Mistral-7B-Instruct-v0.2

只需加一个参数 --speculative_model,vLLM 就会自动启用投机采样机制。

请求示例:OpenAI 兼容 API

vLLM 提供 OpenAI API 接口,我们可以用标准的 openai 库直接请求:

python 复制代码
import openai

openai.api_key = "EMPTY"
openai.api_base = "http://localhost:8000/v1"

response = openai.ChatCompletion.create(
    model="meta-llama/Llama-2-13b-chat-hf",
    messages=[{"role": "user", "content": "用通俗语言解释 speculative decoding 是什么?"}]
)

print(response.choices[0].message["content"])

你无需在请求中设置任何特殊参数,vLLM 会自动使用 Speculative Decoding,只要你在服务端配置了草稿模型。

注意事项

项目 要求
草稿模型和主模型需 tokenizer 兼容 最好是相似架构(如 LLaMA 系列)
草稿模型必须小于主模型 否则没有加速效果,可能更慢
FlashAttention + Speculative 一起使用更快 vLLM 默认启用 FlashAttention
当前仅支持推理,不适用于训练 Speculative decoding 是一种推理时优化策略

总结

Speculative Decoding 是 vLLM 中的一项"投机取巧"的优化技术,让小模型打前站,大模型精准确认,从而实现大幅推理提速。

如果你正在部署 LLM 推理服务,尤其是在 GPU 资源紧张或延迟要求高的场景中,Speculative Decoding 将是你值得尝试的一项加速利器。

延伸阅读

相关推荐
Lntano__y10 分钟前
详细分析大语言模型attention的计算复杂度,从数学角度分析
人工智能·语言模型·自然语言处理
法迪24 分钟前
【学习】Linux 内核中的 cgroup freezer 子系统
人工智能·opencv·计算机视觉
魔乐社区24 分钟前
OpenAI重新开源!gpt-oss-20b适配昇腾并上线魔乐社区
人工智能·gpt·深度学习·开源·大模型
用户51914958484543 分钟前
WordPress开放嵌入自动发现功能中的XSS漏洞分析
人工智能·aigc
失散132 小时前
自然语言处理——03 RNN及其变体
人工智能·rnn·自然语言处理·gru·lstm
Jinkxs2 小时前
告别人工建模:AI 自动化 ETL 工具对比,数据 pipeline 搭建时间缩短 60% 的实践
人工智能·自动化·etl
B612 little star king2 小时前
UNIKGQA论文笔记
论文阅读·人工智能·笔记·自然语言处理·知识图谱
BertieHuang2 小时前
(一)深入源码,从 0 到 1 实现 Cursor
人工智能·python·程序员
reddish2 小时前
用大模型“语音指挥”网站运维?MCP + Coze 实现无代码自动化管理实战
人工智能·程序员·架构
♡喜欢做梦2 小时前
企业级大模型解决方案:架构、落地与代码实现
人工智能·ai·架构