vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理

什么是 Speculative Decoding?

简单来说,Speculative Decoding 就是让"小模型先猜,大模型来验证"

传统语言模型是一个 token 一个 token 地生成,这种逐步采样方式在大模型上非常慢。而投机采样的流程如下:

  1. 草稿模型(Draft Model):使用一个小模型快速生成一批"候选 token"。

  2. 主模型(Target Model):用大模型并行验证这些 token,检查是否匹配其预测。

  3. 对齐则接受,错了则回退:如果草稿部分预测正确,就省去大模型逐个生成的时间。

这一策略显著减少了大模型的推理步骤,大幅提升了吞吐量和响应速度。

为什么能加速?

因为大语言模型最耗时的部分就是每一步 token 的推理和上下文缓存管理。而投机采样允许多个 token 批量处理,减少了 GPU kernel 启动、KV Cache 写入等重复操作。

根据 OpenAI 和其他团队的测试,Speculative Decoding 可带来 1.5x ~ 2.5x 的加速效果,在某些配置下甚至更多。

vLLM 中的 Speculative Decoding 是如何实现的?

vLLM 从 v0.3 开始支持 Speculative Decoding,并且通过一个简单的命令行参数就可以启用它。

启动示例

假设你希望用一个 13B 的大模型推理,同时用 7B 的小模型作为草稿模型,命令如下:

复制代码
python3 -m vllm.entrypoints.openai.api_server \
  --model meta-llama/Llama-2-13b-chat-hf \
  --speculative_model mistralai/Mistral-7B-Instruct-v0.2

只需加一个参数 --speculative_model,vLLM 就会自动启用投机采样机制。

请求示例:OpenAI 兼容 API

vLLM 提供 OpenAI API 接口,我们可以用标准的 openai 库直接请求:

python 复制代码
import openai

openai.api_key = "EMPTY"
openai.api_base = "http://localhost:8000/v1"

response = openai.ChatCompletion.create(
    model="meta-llama/Llama-2-13b-chat-hf",
    messages=[{"role": "user", "content": "用通俗语言解释 speculative decoding 是什么?"}]
)

print(response.choices[0].message["content"])

你无需在请求中设置任何特殊参数,vLLM 会自动使用 Speculative Decoding,只要你在服务端配置了草稿模型。

注意事项

项目 要求
草稿模型和主模型需 tokenizer 兼容 最好是相似架构(如 LLaMA 系列)
草稿模型必须小于主模型 否则没有加速效果,可能更慢
FlashAttention + Speculative 一起使用更快 vLLM 默认启用 FlashAttention
当前仅支持推理,不适用于训练 Speculative decoding 是一种推理时优化策略

总结

Speculative Decoding 是 vLLM 中的一项"投机取巧"的优化技术,让小模型打前站,大模型精准确认,从而实现大幅推理提速。

如果你正在部署 LLM 推理服务,尤其是在 GPU 资源紧张或延迟要求高的场景中,Speculative Decoding 将是你值得尝试的一项加速利器。

延伸阅读

相关推荐
Shawn_Shawn5 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
技术路上的探险家7 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
33三 三like7 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a7 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者8 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_9 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信9 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235869 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活