论文笔记:Tuning Language Models by Proxy

COLM 2024

1 INTRO

尽管大型预训练语言模型(如 GPT-4、LLAMA2 等)具有很强的通用能力,但它们仍然需要进一步的微调来更好地完成特定任务,比如:

  • 遵循指令(instruction-following)

  • 适应特定领域(如代码、法律等)

  • 执行具体任务(如问答、数学推理)

问题是:

  • 这些微调成本高昂,资源需求大;

  • 对于闭源模型(如 GPT-4),用户甚至无法访问其参数,无法直接微调

  • 论文提出了Proxy-tuning

    • 一种 "推理时调整(decoding-time adaptation)" 的方法,不需要修改大模型的权重,仅需访问其 输出的 token 分布(logits)

    • 基本思想是

      • 微调一个 小模型(称为 expert,专家模型);

      • 将其与原始小模型(称为 anti-expert,反专家)对比;

      • 将它们的预测差异用于 引导大模型的输出,以模仿微调后模型的行为。

2 方法

  • 假设我们有一个预训练模型,我们希望对它进行调优。
    • 对于任意输入,我们假设可以访问其对整个词表的输出 logits。
    • 我们的问题是:如何在不需要修改其参数的情况下,引导 表现得像一个已经被调优过的模型?
  • 我们假设存在一个小型的预训练模型,我们将其直接微调,得到
    • 注意, 不必与 属于同一个模型家族;我们只要求它们共享同一个词表。
    • Proxy-tuning 的运作方式是:在大模型的输出分布上,为每个 token 加上一个 logit 偏移量 ,这个偏移量由 的 logits 差值决定。

3 实验结果

指令微调(Instruction-tuning)

  • 目标:让大模型(如 LLAMA2-13B, 70B)具备 LLAMA2-7B-Chat 那样的指令跟随能力。

  • 效果:

    • Proxy-tuning 缩小了 LLAMA2-13B 与其 Chat 版之间 91% 的性能差距

    • 在 70B 上缩小了 88% 的差距;

    • 某些任务中甚至 超越了直接微调模型的效果(尤其是知识密集型任务),说明 proxy-tuning 保留了更多原始知识。

领域适应(Domain Adaptation)

  • 使用 CODELLAMA-7B 引导 LLAMA2-13B 向编程任务迁移;

  • 在代码基准测试中,提升了 17--32% 的准确率

任务微调(Task Finetuning)

  • 应用于问答、数学推理等;

  • Proxy-tuned LLAMA2-70B 比原始 70B 提升了 31%

  • 同时也超过了微调的 7B 模型 9%,说明结合大模型的知识和小模型的专长是有效的。

相关推荐
聆风吟º9 小时前
CANN ops-math 应用指南:从零搭建高效、可复用的自定义 AI 计算组件
人工智能·机器学习·cann
熊文豪9 小时前
从零开始:基于CANN ops-transformer的自定义算子开发指南
人工智能·深度学习·transformer·cann
云边有个稻草人9 小时前
基于CANN ops-nn的AIGC神经网络算子优化与落地实践
人工智能·神经网络·aigc
chian-ocean9 小时前
视觉新范式:基于 `ops-transformer` 的 Vision Transformer 高效部署
人工智能·深度学习·transformer
程序猿追9 小时前
探索 CANN Graph 引擎的计算图编译优化策略:深度技术解读
人工智能·目标跟踪
哈__9 小时前
CANN加速语音识别ASR推理:声学模型与语言模型融合优化
人工智能·语言模型·语音识别
慢半拍iii9 小时前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
User_芊芊君子9 小时前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
小白|9 小时前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
艾莉丝努力练剑9 小时前
hixl vs NCCL:昇腾生态通信库的独特优势分析
运维·c++·人工智能·cann