Langchain4j怎么结合DeepSeek打造本地知识库

Langchain4j 是一款优秀的AI Agent 开发框架。我们可以借助其快速的开发AI Agent的应用,它提供了大量主流的模型接入的实现方式。由于是外国开发的原因,国内的一些框架很多都没有单独的开发。好在他有标准的OpenAI 接口,由于大部分的大模型都支持标准的OpenAI。这就给我们创造了便利的条件去接入更多的优秀的模型。本文就是以 DeepSeek 为例子。

就在昨天之前。Langchain4j 的OpenAI,接口是无法兼容 DeepSeek 的 reasoning_content 内容的,然后就在 6天之后有人提交了兼容的PR。官方也在昨天发布了 V1.2.0 版本,这也就使得我们更加方便的无需自己手动改造的使用DeepSeek。

工欲善其事必先利其器,我们从头开发会面临很多的问题。今天我们就拿一款优秀的开源的AI知识库系统SparkX来看看他是怎么实现接入DeepSeek的。

SparkX 是采用 Springboot3 开发的 基于大语言模型和 RAG 的知识库问答系统。开箱即用、模型中立、灵活编排,支持快速嵌入到第三方业务系统。

开源地址:

gitee.com/shop-sparke...

github.com/nick-bai/Sp...

SparkX在版本 V1.1.2 中引入了对DeepSeek的的支持,我们打开代码,发现pom.xml中增加了几个依赖

xml 复制代码
<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j</artifactId>
    <version>${langchain4j.version}</version>
</dependency>

<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-core</artifactId>
    <version>${langchain4j.version}</version>
    <scope>compile</scope>
</dependency>
<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-open-ai</artifactId>
    <version>${langchain4j.version}</version>
</dependency>

三个依赖的版本保持一致,都是V1.2.0。1.2.0之后OpenAI新增了 returnThinking 这个参数,如果设置成true则表示允许返回思考过程。

打开源码:sparkx.service.helper.StreamChatModelBuildHelper#buildOpenAI

添加图片注释,不超过 140 字(可选)

SparkX在构建 OpenAI 的时候,设置了 returnThinking 为true。在不支持 推理的模型上,这个参数是不起作用的。

接下来的新特性是。TokenStream 多了一个 onPartialThinking 的回调方法,我们在词方法内,就可以输出推理的思考信息了。思考信息与正常的回复信息是通过不同的回调给出的。

打开源码:sparkx.service.helper.SseEmitterHelper#asyncSend2Client

添加图片注释,不超过 140 字(可选)

这里SparkX设置了开启思考信息的<think>标签,这样,前端就可以根据 标签去区别渲染 思考部分和回复部分,给用户更好的体验。

打开前端源码:web\src\components\chatContent\index.vue

添加图片注释,不超过 140 字(可选)

在think标签周围增加 blockquote 这样 markdown 文本就可以轻而易举的区分内容了。于是我们就可以得到如下的效果:

添加图片注释,不超过 140 字(可选)

更多的细节,可以前往下载 SparkX 查看

相关推荐
肖书婷14 分钟前
人工智能-机器学习day2
人工智能·机器学习
西猫雷婶15 分钟前
pytorch基本运算-torch.normal()函数生成的随机数据添加噪声
人工智能·pytorch·python·深度学习·学习·线性代数·机器学习
北京地铁1号线3 小时前
机器学习笔试选择题:题组2
人工智能·算法·机器学习
春末的南方城市3 小时前
阿里开源视频修复方法Vivid-VR:以独特策略与架构革新,引领生成视频修复高质量可控新时代。
人工智能·深度学习·机器学习·计算机视觉·aigc
美码师4 小时前
回忆中学的函数
机器学习
rhy200605205 小时前
SAM的低秩特性
人工智能·算法·机器学习·语言模型
Python极客之家7 小时前
基于数据挖掘的在线游戏行为分析预测系统
人工智能·python·机器学习·数据挖掘·毕业设计·课程设计
0xCode 小新8 小时前
【C语言内存函数完全指南】:memcpy、memmove、memset、memcmp 的用法、区别与模拟实现(含代码示例)
linux·c语言·人工智能·深度学习·机器学习·容器·内存函数
2401_841495649 小时前
【机器学习】朴素贝叶斯法
人工智能·python·数学·算法·机器学习·概率论·朴素贝叶斯法
时间醉酒9 小时前
逻辑回归(四):从原理到实战-训练,评估与应用指南
人工智能·python·算法·机器学习·逻辑回归