RATE:基于LLM的检索增强生成技术提取管道

RATE:基于LLM的检索增强生成技术提取管道

在技术变革的时代,技术图谱对提升决策制定起着关键作用。这些图谱高度依赖于自动化的技术提取方法。本文介绍了检索增强技术提取(RATE),一种基于大型语言模型(LLM)的从科学文献中自动提取技术的管道。

RATE将检索增强生成(RAG)与基于LLM的多定义验证相结合。这种混合方法在候选生成阶段实现高召回率,同时在候选筛选阶段保持高精确度。虽然该管道设计为通用且广泛适用,但我们以678篇聚焦脑机接口(BCI)和扩展现实(XR)的研究文章作为案例展示其应用。

经RATE验证的技术术语被映射到共现网络中,揭示了研究领域的主题集群和结构特征。为评估效果,专家们人工标注了70篇随机选取文章中的技术术语作为黄金标准数据集,并采用基于BERT的技术提取模型作为对比方法。RATE取得91.27%的F1分数,显著优于BERT模型的53.73%。

我们的研究结果凸显了基于定义驱动的LLM方法在技术提取和映射方面的潜力,同时为BCI-XR领域的新兴趋势提供了新见解。源代码可通过此链接获取:https://...

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
songyuc21 小时前
【S2ANet】Align Deep Features for Oriented Object Detection 译读笔记
人工智能·笔记·目标检测
asdfg125896321 小时前
DETR:新一代目标检测范式综述
人工智能·目标检测·目标跟踪
doubao361 天前
如何有效降低AIGC生成内容被识别的概率?
人工智能·深度学习·自然语言处理·aigc·ai写作
SEO_juper1 天前
AEO终极指南:步步为营,提升内容的AI可见性
人工智能·ai·seo·数字营销·aeo
机器之心1 天前
李飞飞最新长文:AI的下一个十年——构建真正具备空间智能的机器
人工智能·openai
机器之心1 天前
豆包编程模型来了,我们用四个关卡考了考它!
人工智能·openai
阿里云大数据AI技术1 天前
让 ETL 更懂语义:DataWorks 支持数据集成 AI 辅助处理能力
人工智能·阿里云·dataworks·ai辅助
hoiii1871 天前
基于交替方向乘子法(ADMM)的RPCA MATLAB实现
人工智能·算法·matlab
Elastic 中国社区官方博客1 天前
Elasticsearch:如何为 Elastic Stack 部署 E5 模型 - 下载及隔离环境
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
xier_ran1 天前
深度学习:神经网络中的参数和超参数
人工智能·深度学习