RATE:基于LLM的检索增强生成技术提取管道

RATE:基于LLM的检索增强生成技术提取管道

在技术变革的时代,技术图谱对提升决策制定起着关键作用。这些图谱高度依赖于自动化的技术提取方法。本文介绍了检索增强技术提取(RATE),一种基于大型语言模型(LLM)的从科学文献中自动提取技术的管道。

RATE将检索增强生成(RAG)与基于LLM的多定义验证相结合。这种混合方法在候选生成阶段实现高召回率,同时在候选筛选阶段保持高精确度。虽然该管道设计为通用且广泛适用,但我们以678篇聚焦脑机接口(BCI)和扩展现实(XR)的研究文章作为案例展示其应用。

经RATE验证的技术术语被映射到共现网络中,揭示了研究领域的主题集群和结构特征。为评估效果,专家们人工标注了70篇随机选取文章中的技术术语作为黄金标准数据集,并采用基于BERT的技术提取模型作为对比方法。RATE取得91.27%的F1分数,显著优于BERT模型的53.73%。

我们的研究结果凸显了基于定义驱动的LLM方法在技术提取和映射方面的潜力,同时为BCI-XR领域的新兴趋势提供了新见解。源代码可通过此链接获取:https://...

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
IT_陈寒3 小时前
SpringBoot高并发优化:这5个被忽视的配置让你的QPS提升300%
前端·人工智能·后端
索迪迈科技3 小时前
机器学习投票分类
人工智能·机器学习·分类
君名余曰正则3 小时前
机器学习08——集成学习(Boosting、Bagging、结合策略)
人工智能·机器学习·集成学习
小鑫同学3 小时前
M4 MacBook Pro + Qwen 模型:企业问答机器人原型微调实战方案
人工智能·llm
搬砖的小码农_Sky3 小时前
机器人商业化落地需要突破的关键性技术
人工智能·ai·机器人
xwz小王子3 小时前
Science Robotics 封面论文:RoboBallet利用图神经网络和强化学习规划多机器人协作
人工智能·神经网络·机器人
Deepoch3 小时前
当按摩机器人“活了”:Deepoc具身智能如何重新定义人机交互体验
人工智能·科技·机器人·人机交互·具身智能
37手游后端团队3 小时前
Cursor实战:用Cursor实现积分商城系统
人工智能·后端
九章云极AladdinEdu3 小时前
绿色算力技术栈:AI集群功耗建模与动态调频系统
人工智能·pytorch·深度学习·unity·游戏引擎·transformer·gpu算力
嘀咕博客3 小时前
拍我AI:PixVerse国内版,爱诗科技推出的AI视频生成平台
人工智能·科技·音视频·ai工具