RATE:基于LLM的检索增强生成技术提取管道

RATE:基于LLM的检索增强生成技术提取管道

在技术变革的时代,技术图谱对提升决策制定起着关键作用。这些图谱高度依赖于自动化的技术提取方法。本文介绍了检索增强技术提取(RATE),一种基于大型语言模型(LLM)的从科学文献中自动提取技术的管道。

RATE将检索增强生成(RAG)与基于LLM的多定义验证相结合。这种混合方法在候选生成阶段实现高召回率,同时在候选筛选阶段保持高精确度。虽然该管道设计为通用且广泛适用,但我们以678篇聚焦脑机接口(BCI)和扩展现实(XR)的研究文章作为案例展示其应用。

经RATE验证的技术术语被映射到共现网络中,揭示了研究领域的主题集群和结构特征。为评估效果,专家们人工标注了70篇随机选取文章中的技术术语作为黄金标准数据集,并采用基于BERT的技术提取模型作为对比方法。RATE取得91.27%的F1分数,显著优于BERT模型的53.73%。

我们的研究结果凸显了基于定义驱动的LLM方法在技术提取和映射方面的潜力,同时为BCI-XR领域的新兴趋势提供了新见解。源代码可通过此链接获取:https://...

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)

公众号二维码

相关推荐
云边云科技4 分钟前
零售行业新店网络零接触部署场景下,如何选择SDWAN
运维·服务器·网络·人工智能·安全·边缘计算·零售
audyxiao00114 分钟前
为了更强大的空间智能,如何将2D图像转换成完整、具有真实尺度和外观的3D场景?
人工智能·计算机视觉·3d·iccv·空间智能
Monkey的自我迭代31 分钟前
机器学习总复习
人工智能·机器学习
大千AI助手31 分钟前
GitHub Copilot:AI编程助手的架构演进与真实世界影响
人工智能·深度学习·大模型·github·copilot·ai编程·codex
用户51914958484540 分钟前
耶稣蓝队集体防护Bash脚本:多模块协同防御实战
人工智能·aigc
☺����1 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码1
人工智能·python·音视频
Black_Rock_br1 小时前
本地部署的终极多面手:Qwen2.5-Omni-3B,视频剪、音频混、图像生、文本写全搞定
人工智能·音视频
用什么都重名1 小时前
《GPT-OSS 模型全解析:OpenAI 回归开源的 Mixture-of-Experts 之路》
人工智能·大模型·openai·gpt-oss
CV-杨帆2 小时前
使用LLaMA-Factory的数据集制作流程与训练微调Qwen3及评估
人工智能