【边缘填充】——图像预处理(OpenCV)

目录

[1 边界复制(BORDER_REPLICATE)](#1 边界复制(BORDER_REPLICATE))

[2 边界反射(BOEDER_REFLECT)](#2 边界反射(BOEDER_REFLECT))

[3 边界反射101(BORDER_REFLECT101)](#3 边界反射101(BORDER_REFLECT101))

[4 边界常数(BORDER_CONSTANT)](#4 边界常数(BORDER_CONSTANT))

[5 边界包裹(BORDER_WRAP)](#5 边界包裹(BORDER_WRAP))


为什么需要填充边缘呢?我们以下图为例。

可以看到,左图在逆时针旋转45度之后原图的四个顶点在右图中已经看不到了,同时,右图的四个顶点区域其实是什么都没有的,因此我们需要对空出来的区域进行一个填充。右图就是对空出来的区域进行了像素值为(0,0,0)的填充,也就是黑色像素值的填充。除此之外,后续的一些图像处理方式也会用到边缘填充,这里介绍五个常用的边缘填充方法。

1 边界复制(BORDER_REPLICATE)

边界复制会将边界处的像素值进行复制,然后作为边界填充的像素值,如下图所示,可以看到四周的像素值都一样。

复制代码
new_img=cv.warpAffine(img,M,(w,h),cv.INTER_LANCZOS4,borderMode=cv.BORDER_REPLICATE)

案例:

python 复制代码
import cv2 as cv
face = cv.imread("./images/face.png")
# 定义旋转中心
h,w = face.shape[:2]
center = (w//2,h//2)
# 获取旋转矩阵
M = cv.getRotationMatrix2D(center,45,0.5)
# 使用仿射变换矩阵进行旋转
img1 = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4)
# 边界复制
replicate = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4,borderMode=cv.BORDER_REPLICATE)
cv.imshow("face",face)
cv.imshow("new1",img1)
cv.imshow("replicate",replicate)
cv.waitKey(0)
cv.destroyAllWindows()

输出:

2 边界反射(BOEDER_REFLECT)

根据原图的边缘进行反射。

python 复制代码
new_img=cv.warpAffine(img,M,(w,h),cv.INTER_LANCZOS4,borderMode=cv.BORDER_REFLECT)

案例:

python 复制代码
import cv2 as cv
face = cv.imread("./images/face.png")
# 定义旋转中心
h,w = face.shape[:2]
center = (w//2,h//2)
# 获取旋转矩阵
M = cv.getRotationMatrix2D(center,45,0.5)
# 使用仿射变换矩阵进行旋转
img1 = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4)
# 边界反射
reflect = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4,borderMode=cv.BORDER_REFLECT)
cv.imshow("face",face)
cv.imshow("new1",img1)
cv.imshow("reflect",reflect)
cv.waitKey(0)
cv.destroyAllWindows()

输出:

3 边界反射101(BORDER_REFLECT101)

与边界反射不同的是,不再反射边缘的像素点。

python 复制代码
new_img=cv.warpAffine(img,M,(w,h),cv.INTER_LANCZOS4,borderMode=cv.BORDER_REFLECT_101)

案例:

python 复制代码
import cv2 as cv
face = cv.imread("./images/face.png")
# 定义旋转中心
h,w = face.shape[:2]
center = (w//2,h//2)
# 获取旋转矩阵
M = cv.getRotationMatrix2D(center,45,0.5)
# 使用仿射变换矩阵进行旋转
img1 = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4)
# 边界反射101
reflect101 = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4,borderMode=cv.BORDER_REFLECT_101)
cv.imshow("face",face)
cv.imshow("new1",img1)
cv.imshow("reflect101",reflect101)
cv.waitKey(0)
cv.destroyAllWindows()

输出:

4 边界常数(BORDER_CONSTANT)

指定常数值作为边缘填充的像素值。

python 复制代码
new_img=cv.warpAffine(img,M,(w,h),cv.INTER_LANCZOS4,borderMode=cv.BORDER_CONSTANT,borderValue=(0,0,255))

案例:

python 复制代码
import cv2 as cv
face = cv.imread("./images/face.png")
# 定义旋转中心
h,w = face.shape[:2]
center = (w//2,h//2)
# 获取旋转矩阵
M = cv.getRotationMatrix2D(center,45,0.5)
# 使用仿射变换矩阵进行旋转
img1 = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4)
# 边界常数
constant = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4,borderMode=cv.BORDER_CONSTANT,borderValue=(255,0,0))
cv.imshow("face",face)
cv.imshow("new1",img1)
cv.imshow("constant",constant)
cv.waitKey(0)
cv.destroyAllWindows()

输出:

5 边界包裹(BORDER_WRAP)

复制图像进行滑动填充

python 复制代码
new_img=cv.warpAffine(img,M,(w,h),cv.INTER_LANCZOS4,borderMode=cv.BORDER_WRAP)

案例:

python 复制代码
import cv2 as cv
face = cv.imread("./images/face.png")
# 定义旋转中心
h,w = face.shape[:2]
center = (w//2,h//2)
# 获取旋转矩阵
M = cv.getRotationMatrix2D(center,45,0.5)
# 使用仿射变换矩阵进行旋转
img1 = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4)
# 边界包裹
wrap = cv.warpAffine(face,M,(w,h),flags=cv.INTER_LANCZOS4,borderMode=cv.BORDER_WRAP)
cv.imshow("face",face)
cv.imshow("new1",img1)
cv.imshow("wrap",wrap)
cv.waitKey(0)
cv.destroyAllWindows()

输出:

相关推荐
GOSIM 全球开源创新汇12 小时前
科班出身+跨界双轨:陈郑豪用 AI 压缩技术,让 4K 游戏走进普通设备|Open AGI Forum
人工智能·游戏·agi
sinat_2869451912 小时前
AI Coding LSP
人工智能·算法·prompt·transformer
IT_陈寒12 小时前
Java并发编程实战:从入门到精通的5个关键技巧,让我薪资涨了40%
前端·人工智能·后端
saoys12 小时前
Opencv 学习笔记:一文掌握四种经典图像滤波(均值 / 高斯 / 中值 / 双边)
笔记·opencv·学习
码上宝藏12 小时前
ComfyUI新插件上线!多模态多视角生成,中文场景适配拉满——手把手教你玩转ComfyUI-qwenmultiangle
人工智能·comfyui
故乡de云12 小时前
Google Cloud与AWS大数据AI服务对比:2026年企业选型指南
大数据·人工智能·aws
●VON12 小时前
可信 AI 认证:从技术承诺到制度信任
人工智能·学习·安全·制造·von
AI架构师易筋12 小时前
AIOps 告警归因中的提示工程:从能用到可上生产(4 阶梯)
开发语言·人工智能·llm·aiops·rag
淬炼之火13 小时前
笔记:Cross Modal Fusion-Mamba
图像处理·笔记·计算机视觉·多模态·特征融合
_codemonster13 小时前
计算机视觉入门到实战系列(八)Harris角点检测算法
python·算法·计算机视觉