人工智能篇之计算机视觉

如大家所了解的,计算机视觉是使用计算机及相关设备对生物视觉的一种模拟。它的主要任务就是通过对采集的图片或视频进行处理以获得相应场景的三维信息,就像人类和许多其他类生物每天所做的那样。

得益于神经网络和深度学习的快速发展,计算机视觉技术得到了长足的发展。全球的计算机视觉产业发展迅速,相关产品在工业界的落地比 NLP 以及知识图谱更加成熟,在安防、金融、互联网、零售、医疗以及娱乐等产业都有了比较成熟的落地产品。

就业:相比于前两个领域,计算机视觉领域相对而言更加成熟,对人才要求也更高更专。就业范围的广阔性上可能不如 NLP 和知识图谱,但在探索的深度上,是有优势的。

相关推荐
一个处女座的程序猿21 分钟前
LLMs之SLMs:《Small Language Models are the Future of Agentic AI》的翻译与解读
人工智能·自然语言处理·小语言模型·slms
档案宝档案管理3 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
IT_Beijing_BIT4 小时前
TensorFlow Keras
人工智能·tensorflow·keras
mit6.8244 小时前
[手机AI开发sdk] 安卓上的Linux环境
人工智能·智能手机
张较瘦_4 小时前
[论文阅读] AI + 教育 | AI赋能“三个课堂”的破局之道——具身认知与技术路径深度解读
论文阅读·人工智能
小雨青年5 小时前
Cursor 项目实战:AI播客策划助手(二)—— 多轮交互打磨播客文案的技术实现与实践
前端·人工智能·状态模式·交互
西西弗Sisyphus5 小时前
线性代数 - 初等矩阵
人工智能·线性代数·机器学习
王哈哈^_^5 小时前
【数据集】【YOLO】【目标检测】共享单车数据集,共享单车识别数据集 3596 张,YOLO自行车识别算法实战训推教程。
人工智能·算法·yolo·目标检测·计算机视觉·视觉检测·毕业设计
仙人掌_lz5 小时前
Multi-Agent的编排模式总结/ Parlant和LangGraph差异对比
人工智能·ai·llm·原型模式·rag·智能体
背包客研究5 小时前
如何在机器学习中使用特征提取对表格数据进行处理
人工智能·机器学习