- 导入官方库的三种手段
- 导入自定义库/模块的方式
- 导入库/模块的核心逻辑:找到根目录(python解释器的目录和终端的目录不一致)
一、导入官方库

1.1 标准导入:导入整个库
这是最基本也是最常见的导入方式,直接使用`import`语句。
python
# 方式1:导入整个模块
import math
print("方式1:使用 import math")
print(f"圆周率π的值:{math.pi}")
print(f"2的平方根:{math.sqrt(2)}\n")
1.2 从库中导入特定项
当使用from语法从库中导入特定的函数或类时,这些函数或类就可以在您的代码中直接使用,不需要添加模块名作为前缀。因为在导入时没有包括模块的完整路径,前面也不能加上库名。
python
# 方式2:导入特定的函数或变量
from math import pi, sqrt
print("方式2:使用 from math import pi, sqrt")
print(f"圆周率π的值:{pi}")
print(f"2的平方根:{sqrt(2)}\n")
1.3 非标准导入:导入整个库
如下
●这将导入`math`模块中定义的所有公开函数和变量。
●和上述from同理,直接调用`sin()`、`cos()`等,而无需`math.`前缀。
虽然 import math和 from math import 看起来都是导入了 `math` 模块,但它们在导入方式、作用域处理以及对命名空间的影响上有重要的区别。
1. 命名空间的污染
`import math`:这种方法会将整个 `math` 模块导入到命名空间中,但是需要使用 `math.` 前缀来访问模块内的函数或变量。这种方式保持了命名空间的整洁,因为所有的 `math` 函数和变量都包含在 `math` 这个模块对象中。
`from math import *`:这种方法将 `math` 模块中的所有公开的函数和变量导入到当前的命名空间中,可以直接使用这些函数和变量而无需 `math.` 前缀。这种方式可能会导致命名空间污染,特别是当有多个模块都被这样导入时,很容易发生命名冲突。
2. 明确性和可维护性
`import math`:明确指出了函数和变量来源于 `math` 模块,这对代码的可读性和维护性都是有益的。其他阅读你代码的人可以清楚地看到每个函数的来源,这对大型项目和团队合作尤为重要。
`from math import *`:虽然代码看起来更简洁,但这种方法减少了代码的明确性。如果没有足够的上下文,很难判断一个特定的函数是来自 `math` 模块还是其他模块,尤其是当你导入了多个模块时。
python
from math import *
print(f"圆周率π的值:{pi}")
print(f"2的平方根:{sqrt(2)}")
二、导入自定义库/模块的方式
模块、包的定义
模块(Module)
-
- 本质 :以
.py
为扩展名的单个文件,包含可执行的 Python 代码(如函数、类、变量等)。 - 作用:通过代码拆分到不同文件,减少冗余,提升代码复用性和可维护性。
- 本质 :以
包(Package)
- 本质:具有层级结构的文件目录(文件夹),用于组织多个模块或子包。
- 核心特征 :必须包含
__init__.py
文件(可为空),标识该目录为 Python 包。 - 与库的关系:包是库的底层实现形式,库通常由包或模块集合构成。
关键区别
- 模块 是单一文件,包 是包含模块的目录(需含
__init__.py
)。 - 包通过目录结构实现模块的层级化管理,支持更复杂的代码组织。
三、源代码的查看
如果第三方库是纯python写的,往往在函数上按住ctrl即可进入函数内部查看源代码。但是很多第三方库为了性能,底层是用其他语言写的,这里我们计算机视觉库OpenCV为例。
OpenCV核心是用C++编写的(C++可以显著提高性能),但它通过Python等其他语言的接口(bindings)使得这些功能可以在Python环境中被调用。这些接口是通过一种叫做Python/C API的技术实现的,其中C++的功能被封装成Python模块,使得Python用户可以像使用纯Python编写的库一样使用OpenCV。OpenCV的核心是用C++编写,并且已经编译成二进制文件,编译后的二进制文件可以在不同操作系统上运行,Python中的用户通常不能直接看到方法的源代码。
二进制文件是机器语言,处理器可以直接理解和执行无需翻译,二进制语言反汇编是很困难的,用二进制语言除了效果好外,也是让用户无法看到源代码,保护了自己的知识产权。
这意味着:
●二进制文件dll文件:当你在Python中导入OpenCV库(通import cv2),你实际上是在调用预先编译好的二进制文件。这些文件包含了实现OpenCV功能的可执行代码,而非人类可读的源代码。
●接口封装:用户只能看到Python函数和对象的接口(即函数的定义,不包括实现的细节)。这也意味着无法从利用ctrl跳转到函数内部,pycharm的debugger功能同理也无法看到内部结构。
●文档和源代码:尽管在Python中不能直接看到C++的源代码实现,用户可以参考官方文档来了解各个函数和方法的用法。如果需要查看实现细节,可以访问OpenCV的[GitHub仓库](https://github.com/opencv/opencv)查看C++源代码。
这就需要我们养成看文档的能力,文档就是以终为始思想的体现。文档就是api使用说明书,可能你日常买东西都不喜欢看使用说明书,但是在代码学习中,这一步是绕不开的。
你会发现很多B站视频的教学,其实远不如文档说明书细致。