Deep learning based descriptor

1、DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF Relocalization

论文链接
代码链接

这是一篇训练点云的文章,在训练出local descriptor之后,通过聚类的方法得出global descriptor,并且提出了hierarchical network,使得local descriptor和global descriptor可以通过一个网络得到,通过共享计算降低了网络的复杂度,从而加快计算和训练。

2、RoRD: Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching

论文链接
代码链接(未完成)

使用VGG作为主干网络,然后一半使用D2-net,另一半使用RoRD网络,RoRD网络会给原始图片一个较大的旋转,以提高所训练出的描述子的旋转不变性,D2-net可以保证在旋转较小或者没有旋转的时候,描述子依然可以很好地进行匹配。然后整合两种描述子。

3、DF-SLAM: A Deep-Learning Enhanced Visual SLAM System based on Deep Local Features

论文链接

未找到相关代码

主要思想:Tfeat(论文链接代码链接)结构+Hardnet(论文链接)提出的negative mining strategy

loss function:

采样策略通过L2成对距离矩阵在批次中选择最接近的不匹配patch。首先是生成一堆匹配好的局部patch,对一块patch中的指定anchor,只能一个可以匹配的patch。定义距离矩阵 D = d i j D={d_{ij}} D=dij.表示第 i i i个anchor patch描述子到第 j j j个postive patch描述子。

从而,hardest negative patch distance可以通过下式进行计算:
d n = m i n ( a k m i n , p j m i n ) d_n=min(a_{k_{min}},p_{j_{min}}) dn=min(akmin,pjmin)

这里, a k m i n a_{k_{min}} akmin表示到anchor patch最近的patch, p j m i n p_{j_{min}} pjmin表示到positive patch最近的patch。

从而定义损失函数:

这里, a i a_i ai表示anchor描述子, p i p_i pi是positive描述子。

4、Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context Aggregation

论文链接
代码链接

主要模型框架:

Pixel-wise Contrastive Loss:


相关推荐
小鸡吃米…5 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd6 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然7 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~7 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1