Deep learning based descriptor

1、DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF Relocalization

论文链接
代码链接

这是一篇训练点云的文章,在训练出local descriptor之后,通过聚类的方法得出global descriptor,并且提出了hierarchical network,使得local descriptor和global descriptor可以通过一个网络得到,通过共享计算降低了网络的复杂度,从而加快计算和训练。

2、RoRD: Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching

论文链接
代码链接(未完成)

使用VGG作为主干网络,然后一半使用D2-net,另一半使用RoRD网络,RoRD网络会给原始图片一个较大的旋转,以提高所训练出的描述子的旋转不变性,D2-net可以保证在旋转较小或者没有旋转的时候,描述子依然可以很好地进行匹配。然后整合两种描述子。

3、DF-SLAM: A Deep-Learning Enhanced Visual SLAM System based on Deep Local Features

论文链接

未找到相关代码

主要思想:Tfeat(论文链接代码链接)结构+Hardnet(论文链接)提出的negative mining strategy

loss function:

采样策略通过L2成对距离矩阵在批次中选择最接近的不匹配patch。首先是生成一堆匹配好的局部patch,对一块patch中的指定anchor,只能一个可以匹配的patch。定义距离矩阵 D = d i j D={d_{ij}} D=dij.表示第 i i i个anchor patch描述子到第 j j j个postive patch描述子。

从而,hardest negative patch distance可以通过下式进行计算:
d n = m i n ( a k m i n , p j m i n ) d_n=min(a_{k_{min}},p_{j_{min}}) dn=min(akmin,pjmin)

这里, a k m i n a_{k_{min}} akmin表示到anchor patch最近的patch, p j m i n p_{j_{min}} pjmin表示到positive patch最近的patch。

从而定义损失函数:

这里, a i a_i ai表示anchor描述子, p i p_i pi是positive描述子。

4、Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context Aggregation

论文链接
代码链接

主要模型框架:

Pixel-wise Contrastive Loss:


相关推荐
软件开发技术深度爱好者1 天前
基于多个大模型自己建造一个AI智能助手
人工智能
中國龍在廣州1 天前
现在人工智能的研究路径可能走反了
人工智能·算法·搜索引擎·chatgpt·机器人
攻城狮7号1 天前
小米具身大模型 MiMo-Embodied 发布并全面开源:统一机器人与自动驾驶
人工智能·机器人·自动驾驶·开源大模型·mimo-embodied·小米具身大模型
搜移IT科技1 天前
【无标题】2025ARCE亚洲机器人大会暨展览会将带来哪些新技术与新体验?
人工智能
信也科技布道师FTE1 天前
当AMIS遇见AI智能体:如何为低代码开发装上“智慧大脑”?
人工智能·低代码·llm
青瓷程序设计1 天前
植物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
AI即插即用1 天前
即插即用系列 | CVPR 2025 WPFormer:用于表面缺陷检测的查询式Transformer
人工智能·深度学习·yolo·目标检测·cnn·视觉检测·transformer
唐兴通个人1 天前
数字化AI大客户营销TOB营销客户开发专业销售技巧培训讲师培训师唐兴通老师分享AI销冠人工智能销售AI赋能销售医药金融工业品制造业
人工智能·金融
人机与认知实验室1 天前
国内主流大语言模型之比较
人工智能·语言模型·自然语言处理
T0uken1 天前
【Python】UV:境内的深度学习环境搭建
人工智能·深度学习·uv