Deep learning based descriptor

1、DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF Relocalization

论文链接
代码链接

这是一篇训练点云的文章,在训练出local descriptor之后,通过聚类的方法得出global descriptor,并且提出了hierarchical network,使得local descriptor和global descriptor可以通过一个网络得到,通过共享计算降低了网络的复杂度,从而加快计算和训练。

2、RoRD: Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching

论文链接
代码链接(未完成)

使用VGG作为主干网络,然后一半使用D2-net,另一半使用RoRD网络,RoRD网络会给原始图片一个较大的旋转,以提高所训练出的描述子的旋转不变性,D2-net可以保证在旋转较小或者没有旋转的时候,描述子依然可以很好地进行匹配。然后整合两种描述子。

3、DF-SLAM: A Deep-Learning Enhanced Visual SLAM System based on Deep Local Features

论文链接

未找到相关代码

主要思想:Tfeat(论文链接代码链接)结构+Hardnet(论文链接)提出的negative mining strategy

loss function:

采样策略通过L2成对距离矩阵在批次中选择最接近的不匹配patch。首先是生成一堆匹配好的局部patch,对一块patch中的指定anchor,只能一个可以匹配的patch。定义距离矩阵 D = d i j D={d_{ij}} D=dij.表示第 i i i个anchor patch描述子到第 j j j个postive patch描述子。

从而,hardest negative patch distance可以通过下式进行计算:
d n = m i n ( a k m i n , p j m i n ) d_n=min(a_{k_{min}},p_{j_{min}}) dn=min(akmin,pjmin)

这里, a k m i n a_{k_{min}} akmin表示到anchor patch最近的patch, p j m i n p_{j_{min}} pjmin表示到positive patch最近的patch。

从而定义损失函数:

这里, a i a_i ai表示anchor描述子, p i p_i pi是positive描述子。

4、Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context Aggregation

论文链接
代码链接

主要模型框架:

Pixel-wise Contrastive Loss:


相关推荐
方见华Richard1 天前
世毫九《认知几何学修订版:从离散概念网络到认知拓扑动力学》
人工智能·经验分享·交互·原型模式·空间计算
人工智能培训1 天前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
emma羊羊1 天前
【AI技术安全】
网络·人工智能·安全
玄同7651 天前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
永恒的溪流1 天前
环境出问题,再修改
pytorch·python·深度学习
Fxrain1 天前
[Reading Paper]FFA-Net
图像处理·人工智能·计算机视觉
GISer_Jing1 天前
Memory、Rules、Skills、MCP如何重塑AI编程
前端·人工智能·aigc·ai编程
DS随心转APP1 天前
ChatGPT和Gemini回答怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
大模型玩家七七1 天前
向量数据库实战:从“看起来能用”到“真的能用”,中间隔着一堆坑
数据库·人工智能·python·深度学习·ai·oracle
AC赳赳老秦1 天前
科研数据叙事:DeepSeek将实验数据转化为故事化分析框架
开发语言·人工智能·数据分析·r语言·时序数据库·big data·deepseek