深度学习·VPT

VPT

  • 核心思想:冻结backbone,在encoder的输入中
    引入额外可学习的token,微调这些token和decoder部分,避免直接调整backbone。
  • 两种方法:Deep和Shallow
    只有第一层的prompt token是可以学习的参数

    每一层 transformer layer的prompt token都是可以学习的参数

VPT的应用

  • VIT模型
  • SWIN transformer,这个有点不同,没有[cls] token

VPT on hierarchical Transformers. We extend VPT to Swin [52], which employs MSA within local shifted windows and merges patch embeddings at deeper layers. For simplicity and without loss of generality, we implement VPT in the most straightforward manner: the prompts are attended within the local windows, but are ignored during patch merging stages. The experiments are conducted on the ImageNet-21k supervised pre-trained Swin-Base. VPT continues to outperform other parameter-efficient fine-tuning methods (b, c) for all three subgroups of VTAB Tab. 2, though in this case Full yields the highest accuracy scores overall (at a heavy cost in total parameters).

VPT的探究

prompt的位置

  • 结论:就是作为独立的输入最好
  • 1:直接单独作为输入的一部分,与patch embedding分开
  • 2:与patch embedding进行累加
  • 3:在embedding,前加入prompt
  • 4:在embeddingprompt作为一个通道加入

prompt length

  • 可以看到10~100这个区间 最合适。
相关推荐
扫地的小何尚8 小时前
NVIDIA Dynamo深度解析:如何优雅地解决LLM推理中的KV缓存瓶颈
开发语言·人工智能·深度学习·机器学习·缓存·llm·nvidia
张较瘦_10 小时前
[论文阅读] AI赋能 | 当AI看懂交通摄像头:多模态大模型零样本检测的实战报告
论文阅读·人工智能
cxr82810 小时前
BMAD框架实践:掌握story-checklist提升用户故事质量
前端·人工智能·agi·智能体·ai赋能
Dongsheng_201912 小时前
【汽车篇】AI深度学习在汽车零部件外观检测——机电轴承的应用
人工智能·深度学习·汽车
江瀚视野12 小时前
汽车价格战全面熄火了?不卷价格该卷什么?
人工智能·自动驾驶
资讯全球13 小时前
2025年智慧差旅平台推荐
人工智能
en-route13 小时前
从零开始学神经网络——LSTM(长短期记忆网络)
人工智能·深度学习·lstm
视觉语言导航13 小时前
CVPR-2025 | 具身导航指令高效生成!MAPInstructor:基于场景图的导航指令生成Prompt调整策略
人工智能·机器人·具身智能
wanhengidc13 小时前
云手机与人工智能之间的关系
人工智能·智能手机