Datawhale+AI夏令营_让AI读懂财报PDF task2深入赛题笔记

1.深入理解baseline方案
1.1 赛题任务

项目背景

本次赛题的核心目标是打造一个能看懂图片、读懂文字、并将两者关联起来思考的AI助手,构建一个先进的智能问答系统,以应对真实世界中复杂的、图文混排的信息环境。

(1)让AI模型能够阅读并理解包含大量图标、图像和文字的pdf文档,基于信息回答用户问题。

(2)能找到答案的同时还需要标注出答案的出处,比如源自于哪一个文件的哪一页。

1.2 相关知识点及参考资料

多模态RAG任务有四大核心要素

此次赛题的核心不仅仅是简单的问答,而是基于给定的pdf知识库的、可溯源的多模态问答。

它定义了我们系统的四个基本支柱,也是我们构建解决方案时必须时刻牢记的四个约束:

数据源:一堆图文混排的PDF,这是我们唯一的数据。

可溯源:必须明确指出答案的出处。

多模态:问题可能需要理解文本,也可能需要理解图表(图像)。

问答:根据检索的信息生成一个回答。

1.3 相关知识点及参考资料

PDF文档解析库PyMuPDF官方教程:https://pymupdf.readthedocs.io/en/latest/

强大的中文OCR工具PaddleOCR:https://github.com/PaddlePaddle/PaddleOCR

领先的中文文本向量化模型库FlagEmbedding (BGE模型):https://github.com/FlagOpen/FlagEmbedding

经典图文多模态向量化模型CLIP (Hugging Face实现):https://huggingface.co/docs/transformers/model_doc/clip

高性能向量检索引擎FAISS入门指南:https://github.com/facebookresearch/faiss/wiki/Getting-started

简单易用的向量数据库ChromaDB快速上手:https://docs.trychroma.com/getting-started

通义千问Qwen大模型官方仓库 (含多模态VL模型):https://github.com/QwenLM/Qwen-VL

集成化RAG开发框架LlamaIndex五分钟入门:https://docs.llamaindex.ai/en/stable/getting_started/starter_example.html

Xinference官方仓库(模型推理框架):

https://github.com/xorbitsai/inference

2.任务要求的重点和难点

未完待续...

相关推荐
赴335几秒前
dlib库关键点定位和疲劳检测
人工智能·opencv·计算机视觉·关键点·疲劳检测·dlib
汀丶人工智能17 分钟前
AI Compass前沿速览:Qwen3-Max、Mixboard、Qwen3-VL、Audio2Face、Vidu Q2 AI视频生成模型、Qwen3-Liv
人工智能
唐天下文化17 分钟前
展厅迎宾机器人:豹小秘2如何打造科技第一印象
人工智能·科技·机器人
林炳然21 分钟前
将软件从C盘迁移至D盘:释放系统盘空间的终极指南
笔记
Source.Liu29 分钟前
mdBook 开源笔记
笔记·rust·markdown
qiu_zhongya44 分钟前
iree 用C++来运行Qwen 2.5 0.5b
开发语言·c++·人工智能
拾贰_C1 小时前
【anaconda】anaconda安装配置,git安装配置以及pytorch安装
人工智能·pytorch·git
荼蘼1 小时前
Dlib+OpenCV 人脸轮廓绘制
人工智能·opencv·计算机视觉
九河云1 小时前
物流仓储自动化升级:物道供应链 AGV 机器人实现分拣效率提升 60%
人工智能·科技·物联网·机器人·自动化
_dindong1 小时前
Linux系统编程:线程概念
linux·运维·笔记·学习