该方法使用了k近邻(KNN)密度估计计算概率密度
-
:近邻数
-
:总样本数
-
:以x为中心、到第k个近邻的距离 dk(x)dk(x) 为半径的超球体体积
程序代码:
python
import math
import random
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.ticker import MultipleLocator
data_dict = {}
train_data = {}
test_data = {}
with open('Iris数据txt版.txt', 'r') as file:
for line in file:
line = line.strip()
data = line.split('\t')
if len(data) >= 3:
try:
category = data[0]
attribute1 = eval(data[1])
attribute2 = eval(data[2])
if category not in data_dict:
data_dict[category] = {'Length': [], 'Width': []}
data_dict[category]['Length'].append(attribute1)
data_dict[category]['Width'].append(attribute2)
except ValueError:
print(f"Invalid data in line: {line}")
continue
for category, attributes in data_dict.items():
print(f'种类: {category}')
print(len(attributes["Length"]))
print(len(attributes["Width"]))
print(f'属性1: {attributes["Length"]}')
print(f'属性2: {attributes["Width"]}')
for category, attributes in data_dict.items():
lengths = attributes['Length']
widths = attributes['Width']
train_indices = random.sample(range(len(lengths)), 45)
test_indices = [i for i in range(len(lengths)) if i not in train_indices]
train_data[category] = {
'Length': [lengths[i] for i in train_indices],
'Width': [widths[i] for i in train_indices]
}
test_data[category] = {
'Length': [lengths[i] for i in test_indices],
'Width': [widths[i] for i in test_indices]
}
prior_rate = 1.0/len(data_dict)
print(len(train_data['1']['Length']))
print(train_data['1'])
print(len(test_data['1']['Length']))
print(test_data['1'])
print(len(train_data['2']['Length']))
print(train_data['2'])
print(len(test_data['2']['Length']))
print(test_data['2'])
print(len(train_data['3']['Length']))
print(train_data['3'])
print(len(test_data['3']['Length']))
print(test_data['3'])
'''
用传统方法k近邻计算概率密度
'''
kn = 7 #Kn = sqrt(n)
n = 45
length_range = np.around(np.linspace(4, 8, 40), 1)
width_range = np.around(np.linspace(2, 4.5, 25), 1)
length_mesh, width_mesh = np.meshgrid(length_range, width_range)
distances_dict = {}
for length in length_range:
for width in width_range:
distances = []
for category1, attributes1 in train_data.items():
lengths = attributes1['Length']
widths = attributes1['Width']
distances_to_points = np.sqrt((np.array(lengths) - length) ** 2 + (np.array(widths) - width) ** 2)
n_shortest_distance = np.partition(sorted(distances_to_points,reverse=True), kn-1)[kn-1]
distances.append(kn/(n*math.pi*math.pow(n_shortest_distance,2)))
distances_dict[(length, width)] = distances
for key, value in distances_dict.items():
print(f'坐标点: {key}, 概率密度: {value}')
right = 0
all = 0
for category2,data2 in test_data.items():
print(category2,data2)
for i,j in zip(data2['Length'],data2['Width']):
print(i,j)
for key, value in distances_dict.items():
if key[0] == i and key[1] == j:
print(value)
predict = value.index(max(value))+1
print(category2,predict)
all += 1
if int(category2) == predict:
right += 1
print("正确率:",right/all)
运行结果:
种类: 1
50
50
属性1: [5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0]
属性2: [3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3]
种类: 2
50
50
属性1: [7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7]
属性2: [3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8]
种类: 3
50
50
属性1: [6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9]
属性2: [3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3, 2.5, 3, 3.4, 3]
1 {'Length': [4.6, 5.8, 5.1, 5.5, 5.0], 'Width': [3.4, 4.0, 3.8, 3.5, 3.3]}
4.6 3.4
0.6189358898018181, 0.03614224174025197, 0.020545589702964818
1 1
5.8 4.0
0.14563197407101539, 0.04542648732490388, 0.04542648732490388
1 1
5.1 3.8
0.5501652353793919, 0.04058595998700429, 0.0301919946244788
1 1
5.5 3.5
0.38088362449342483, 0.12076797849791507, 0.07617672489868499
1 1
5.0 3.3
2 {'Length': [6.0, 5.6, 5.5, 5.7, 5.7], 'Width': [2.2, 3.0, 2.6, 3.0, 2.8]}
6.0 2.2
5.6 3.0
0.12076797849791528, 0.5501652353793887, 0.12378717796036282
2 2
5.5 2.6
0.076176724898685, 0.6189358898018155, 0.1207679784979152
2 2
5.7 3.0
0.09522090612335607, 0.5501652353793919, 0.17074093511774208
2 2
5.7 2.8
0.0728159870355077, 1.2378717796036336, 0.24757435592072652
2 2
3 {'Length': [5.8, 6.4, 6.9, 5.8, 6.5], 'Width': [2.7, 3.1, 3.1, 2.7, 3]}
5.8 2.7
0.05501652353793919, 1.2378717796036283, 0.2912639481420303
3 2
6.4 3.1
0.030946794490090756, 0.5501652353793919, 0.5501652353793919
3 2
6.9 3.1
0.016957147665803148, 0.4951487118414499, 0.9902974236829026
3 3
5.8 2.7
0.05501652353793919, 1.2378717796036283, 0.2912639481420303
3 2
6.5 3
0.02552312947636352, 0.9902974236829026, 0.9902974236829043
3 3
正确率: 0.7692307692307693