修复图像、视频和3D场景的AI工具–Inpaint Anything

TL; DR:用户可以通过单击来选择图像中的任何对象。借助强大的视觉模型,例如SAMLaMa稳定扩散 (SD)Inpaint Anything 能够顺利地移除对象(即Remove Anything )。此外,在用户输入文本的提示下,Inpaint Anything 可以用任何想要的内容填充对象(即Fill Anything )或任意替换其背景(即Replace Anything)。

下载方式:

1、Github 开源项目Release 0.1.0 · geekyutao/Inpaint-Anything · GitHub

2、网盘【点击下载

🌟 功能

  • 移除任何内容
  • 填充任意内容
  • 替换任何内容
  • 删除任何3D内容(🔥新功能)
  • 填充任意3D内容
  • 替换任何3D内容
  • 删除任何视频(🔥新功能)
  • 填充任何视频
  • 替换任何视频

💡 亮点

📌 删除所有内容

单击 图像中的某个对象,Inpainting Anything 将立即将其删除

  • 点击一个对象;
  • 分割任何模型(SAM)将对象分割出来;
  • 修复模型(例如,LaMa)填补了"空洞"。

安装

需要python>=3.8

复制代码
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install -r lama/requirements.txt

在 Windows 中,我们建议您首先安装minicondaAnaconda Powershell Prompt (miniconda3)以管理员身份打开。然后 pip install ./lama_requirements_windows.txt而不是 ./lama/requirements.txt

用法

下载Segment AnythingLaMa中提供的模型检查点(例如sam_vit_h_4b8939.pthbig-lama),并放入./pretrained_models。 为了简单起见,你也可以前往这里,直接下载pretrained_models,将目录放入./,即可获得./pretrained_models

对于 MobileSAM,sam_model_type 应使用"vit_t",sam_ckpt 应使用"./weights/mobile_sam.pt"。对于 MobileSAM 项目,请参阅MobileSAM

复制代码
bash script/remove_anything.sh

指定一个图像和一个点,"Remove Anything"将会删除该点处的对象。

复制代码
python remove_anything.py \
    --input_img ./example/remove-anything/dog.jpg \
    --coords_type key_in \
    --point_coords 200 450 \
    --point_labels 1 \
    --dilate_kernel_size 15 \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
    --lama_config ./lama/configs/prediction/default.yaml \
    --lama_ckpt ./pretrained_models/big-lama

如果你的机器有显示设备,可以改为--coords_type key_in。如果设置了,运行上述命令后,图像就会显示出来。(1)使用左键单击 记录单击的坐标。它支持修改点,并且只记录最后一个点的坐标。(2)使用右键单击 完成选择。--coords_type click``click

演示

📌 填充任意内容

文字提示:"长凳上的一只泰迪熊"

单击 一个对象,输入 您想要填充的内容,Inpaint Anything 就会填充它!

  • 点击一个对象;
  • SAM将物体分割出来;
  • 输入文本提示;
  • 文本提示引导的修复模型(例如,稳定扩散)根据文本填补"空洞"。

安装

需要python>=3.8

复制代码
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install diffusers transformers accelerate scipy safetensors

用法

下载Segment Anything中提供的模型检查点(例如sam_vit_h_4b8939.pth)并放入./pretrained_models。为了简单起见,您也可以前往直接下载pretrained_models,将目录放入./,即可获得./pretrained_models

对于 MobileSAM,sam_model_type 应使用"vit_t",sam_ckpt 应使用"./weights/mobile_sam.pt"。对于 MobileSAM 项目,请参阅MobileSAM

复制代码
bash script/fill_anything.sh

指定图像、点和文本提示,然后运行:

复制代码
python fill_anything.py \
    --input_img ./example/fill-anything/sample1.png \
    --coords_type key_in \
    --point_coords 750 500 \
    --point_labels 1 \
    --text_prompt "a teddy bear on a bench" \
    --dilate_kernel_size 50 \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth

演示

文字提示:"手里拿着相机镜头"

文字提示:"墙上有一幅毕加索的画"

文字提示:"海上有一艘航空母舰"

文字提示:"路上的跑车"

📌 替换任何东西

文字提示:"办公室里的一名男子"

单击 一个对象,输入 您想要替换的背景,Inpaint Anything 将替换它!

  • 点击一个对象;
  • SAM将物体分割出来;
  • 输入文本提示;
  • 文本提示引导的修复模型(例如,稳定扩散)根据文本替换背景。

安装

需要python>=3.8

复制代码
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install diffusers transformers accelerate scipy safetensors

用法

下载Segment Anything中提供的模型检查点(例如sam_vit_h_4b8939.pth)并放入./pretrained_models。 为了简单起见,您也可以前往直接下载pretrained_models,将目录放入./即可./pretrained_models

对于 MobileSAM,sam_model_type 应使用"vit_t",sam_ckpt 应使用"./weights/mobile_sam.pt"。对于 MobileSAM 项目,请参阅MobileSAM

复制代码
bash script/replace_anything.sh

指定图像、点和文本提示,然后运行:

复制代码
python replace_anything.py \
    --input_img ./example/replace-anything/dog.png \
    --coords_type key_in \
    --point_coords 750 500 \
    --point_labels 1 \
    --text_prompt "sit on the swing" \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth

演示

文字提示:"坐在秋千上"

文字提示:"一辆公交车,在一条乡间小路的中央,夏天"

文字提示:"早餐"

文字提示:"城市十字路口"

📌 删除任何 3D 内容

只需单击源视图的 第一个 视图中的对象,Remove Anything 3D 就可以从整个场景中删除该对象!

  • 单击源视图的第一个视图中的一个对象;
  • SAM将对象分割出来(使用三个可能的掩码);
  • 选择一个面具;
  • 利用OSTrack等跟踪模型来跟踪这些视图中的对象;
  • SAM根据跟踪结果在每个源视图中分割出对象;
  • 利用LaMa等修复模型来修复每个源视图中的对象。
  • 利用NeRF等新颖视图合成模型来合成没有物体的场景的新颖视图。

安装

需要python>=3.8

复制代码
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install -r lama/requirements.txt
python -m pip install jpeg4py lmdb

用法

下载Segment AnythingLaMa中提供的模型 checkpoint (如sam_vit_h_4b8939.pth),放入./pretrained_models。 另外,从这里下载OSTrack预训练模型(如vitb_384_mae_ce_32x4_ep300.pth)放入。 另外,下载 [nerf_llff_data](如horns),放入。 为了简单起见,你也可以到这里,直接下载pretrained_models,将目录放入,即可获得。 另外,下载pretrain,将目录放入,即可获得。./pytracking/pretrain``./example/3d``./``./pretrained_models``./pytracking``./pytracking/pretrain

对于 MobileSAM,sam_model_type 应使用"vit_t",sam_ckpt 应使用"./weights/mobile_sam.pt"。对于 MobileSAM 项目,请参阅MobileSAM

复制代码
bash script/remove_anything_3d.sh

指定一个 3d 场景、一个点、场景配置和遮罩索引(指示使用第一个视图的哪个遮罩结果),然后 Remove Anything 3D 将从整个场景中删除该对象。

复制代码
python remove_anything_3d.py \
      --input_dir ./example/3d/horns \
      --coords_type key_in \
      --point_coords 830 405 \
      --point_labels 1 \
      --dilate_kernel_size 15 \
      --output_dir ./results \
      --sam_model_type "vit_h" \
      --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
      --lama_config ./lama/configs/prediction/default.yaml \
      --lama_ckpt ./pretrained_models/big-lama \
      --tracker_ckpt vitb_384_mae_ce_32x4_ep300 \
      --mask_idx 1 \
      --config ./nerf/configs/horns.txt \
      --expname horns

通常--mask_idx设置为 1,这通常是第一帧最可信的掩码结果。如果对象没有被很好地分割出来,你可以尝试其他掩码(0 或 2)。

📌 删除所有视频

只需**单击视频第一 帧中的某个对象,"Remove Anything Video"即可从整个视频中删除该对象!

  • 点击视频第一帧中的某个对象;
  • SAM将对象分割出来(使用三个可能的掩码);
  • 选择一个面具;
  • 利用OSTrack等跟踪模型来跟踪视频中的对象;
  • SAM根据跟踪结果在每帧中分割出物体;
  • 利用STTN等视频修复模型来修复每一帧中的对象。

安装

需要python>=3.8

复制代码
python -m pip install torch torchvision torchaudio
python -m pip install -e segment_anything
python -m pip install -r lama/requirements.txt
python -m pip install jpeg4py lmdb

用法

下载Segment AnythingSTTN中提供的模型检查点(例如sam_vit_h_4b8939.pthsttn.pth),并将它们放入./pretrained_models。此外,从这里下载OSTrack预训练模型(例如vitb_384_mae_ce_32x4_ep300.pth)并将其放入。为了简单起见,您也可以前往这里,直接下载pretrained_models,将目录放入并获取。另外,下载pretrain,将目录放入并获取。./pytracking/pretrain``./``./pretrained_models``./pytracking``./pytracking/pretrain

对于 MobileSAM,sam_model_type 应使用"vit_t",sam_ckpt 应使用"./weights/mobile_sam.pt"。对于 MobileSAM 项目,请参阅MobileSAM

复制代码
bash script/remove_anything_video.sh

指定一个视频、一个点、视频 FPS 和蒙版索引(表示使用第一帧的哪个蒙版结果),Remove Anything Video 将从整个视频中删除该对象。

复制代码
python remove_anything_video.py \
    --input_video ./example/video/paragliding/original_video.mp4 \
    --coords_type key_in \
    --point_coords 652 162 \
    --point_labels 1 \
    --dilate_kernel_size 15 \
    --output_dir ./results \
    --sam_model_type "vit_h" \
    --sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
    --lama_config lama/configs/prediction/default.yaml \
    --lama_ckpt ./pretrained_models/big-lama \
    --tracker_ckpt vitb_384_mae_ce_32x4_ep300 \
    --vi_ckpt ./pretrained_models/sttn.pth \
    --mask_idx 2 \
    --fps 25

通常--mask_idx设置为 2,这通常是第一帧最可信的掩码结果。如果对象没有被很好地分割出来,你可以尝试其他掩码(0 或 1)。

相关推荐
会飞的老朱9 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º10 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee12 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º13 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys13 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567813 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子13 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能14 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448714 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile14 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算