CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案

引言

随着GPT、LLaMA、Falcon等大型语言模型(LLM)的广泛应用,如何实现高效、低延迟的大模型推理成为业界关注的核心问题。一个典型的数十亿参数规模的LLM,在通用硬件上进行完整推理可能需要数秒甚至更长时间,这对于实时对话、交互式应用等场景是不可接受的。

ascend-transformer-boost(简称ATB)是CANN生态系统中专门针对Transformer类大模型推理优化的加速库,通过一系列先进的优化技术,将大模型推理延迟降低到毫秒级别。本文将深入解析ATB的核心技术、实现原理和应用实践。

一、ascend-transformer-boost概述

1.1 设计目标

ATB加速库致力于解决大模型推理的核心痛点:

  • 极致低延迟:首token延迟(TTFT)和后续token生成延迟(TPOT)双重优化
  • 高吞吐量:支持批处理和并发推理
  • 显存优化:通过KV缓存优化和算子融合降低显存占用
  • 灵活部署:支持不同规模模型和硬件配置

1.2 核心优化技术

优化技术 目标问题 性能提升
FlashAttention 注意力计算 2-4x
KV Cache 自回归推理 10x+
PagedAttention 动态批处理 5-8x
算子融合 内存访问 1.5-2x
量化压缩 模型大小 2-4x
连续批处理 吞吐量 3-5x

1.3 支持的模型架构

ATB支持主流的Transformer变体:

  • Decoder-only: GPT系列、LLaMA系列、Falcon、Mistral
  • Encoder-Decoder: T5、BART
  • 多模态: CLIP、BLIP、Flamingo
  • 专家混合: Mixtral 8x7B、Switch Transformer

二、核心优化技术详解

2.1 FlashAttention V2实现

FlashAttention通过分块计算和内存优化实现高效注意力计算:

cpp 复制代码
#include "atb_attention.h"
#include "atb_tensor.h"

namespace atb {

template<typename T>
class FlashAttentionV2 {
public:
    struct Config {
        int batch_size;
        int num_heads;
        int head_dim;
        int max_seq_len;
        float scale;
        bool is_causal;
    };

    FlashAttentionV2(const Config& config)
        : config_(config) {
        // 根据硬件特性选择最优分块大小
        block_size_m_ = get_optimal_block_m();
        block_size_n_ = get_optimal_block_n();
        block_size_b_ = get_optimal_block_b();
    }

    // 前向计算
    Tensor<T> forward(const Tensor<T>& q,
                     const Tensor<T>& k,
                     const Tensor<T>& v,
                     const Tensor<T>& mask = Tensor<T>()) {
        // 输入形状: [batch, num_heads, seq_len, head_dim]

        int batch = q.shape(0);
        int num_heads = q.shape(1);
        int seq_len = q.shape(2);
        int head_dim = q.shape(3);

        // 输出初始化
        Tensor<T> output({batch, num_heads, seq_len, head_dim});
        Tensor<float> l({batch, num_heads, seq_len, 1});  // 归一化因子
        Tensor<float> m({batch, num_heads, seq_len, 1});  // 最大值

        l.fill(0.0f);
        m.fill(-std::numeric_limits<float>::infinity());
        output.fill(0.0f);

        // 分块遍历K和V
        for (int start_n = 0; start_n < seq_len; start_n += block_size_n_) {
            int end_n = std::min(start_n + block_size_n_, seq_len);

            // 加载当前K、V块到片上内存
            auto k_block = load_block(k, start_n, end_n);
            auto v_block = load_block(v, start_n, end_n);

            // 计算Q与当前K块的分值矩阵
            auto q_block = load_full_q(q);
            auto scores = compute_scores(q_block, k_block);  // [B, H, M, N_block]

            // 更新运行统计量
            auto new_m = elementwise_max(m, reduce_max(scores, /*dim=*/-1));
            auto scores_scaled = exp(scores - new_m);

            auto new_l = l * exp(m - new_m) + reduce_sum(scores_scaled, /*dim=*/-1);

            // 更新输出: o = o * (l / new_l) * exp(m - new_m) + softmax(scores) @ v
            auto output_scaled = output * (l / new_l) * exp(m - new_m);
            auto attn_contrib = matmul(scores_scaled, v_block) / new_l;

            output = output_scaled + attn_contrib;
            m = new_m;
            l = new_l;
        }

        return output;
    }

private:
    Config config_;
    int block_size_m_;
    int block_size_n_;
    int block_size_b_;

    // 根据硬件缓存大小选择最优分块
    int get_optimal_block_m() {
        // 假设SRAM大小为192KB
        int sram_size = 192 * 1024 / sizeof(T);
        // 留出空间用于K、V块
        int available = sram_size / 3;
        // head_dim通常是64或128
        return available / config_.head_dim;
    }

    int get_optimal_block_n() {
        return get_optimal_block_m();
    }

    int get_optimal_block_b() {
        return config_.batch_size;
    }

    Tensor<T> load_block(const Tensor<T>& tensor, int start, int end) {
        // 高效加载指定块,考虑内存对齐
        return tensor.slice(/*dim=*/2, start, end);
    }

    Tensor<T> load_full_q(const Tensor<T>& q) {
        // Flash Attention中Q通常分块较小或全量加载
        return q;
    }

    Tensor<T> compute_scores(const Tensor<T>& q, const Tensor<T>& k) {
        // scores = Q @ K^T * scale
        auto k_t = transpose(k, {0, 1, 3, 2});
        auto scores = matmul(q, k_t);
        return scalar_multiply(scores, config_.scale);
    }

    Tensor<T> exp(const Tensor<T>& x) {
        // 优化的指数函数
        Tensor<T> result(x.shape());
        for (size_t i = 0; i < x.size(); ++i) {
            result.data()[i] = std::exp(x.data()[i]);
        }
        return result;
    }
};

} // namespace atb

2.2 PagedAttention实现

PagedAttention解决了KV缓存中的内存碎片问题:

cpp 复制代码
#include "atb_kv_cache.h"
#include <vector>
#include <memory>

namespace atb {

// KV缓存块管理器
class KVCacheBlockManager {
public:
    struct Block {
        int block_id;
        std::vector<std::shared_ptr<Tensor<float>>> keys;
        std::vector<std::shared_ptr<Tensor<float>>> values;
        std::vector<int> ref_counts;  // 每层的引用计数
    };

    KVCacheBlockManager(int block_size, int num_blocks, int num_layers)
        : block_size_(block_size),
          num_blocks_(num_blocks),
          num_layers_(num_layers) {

        // 预分配所有块
        for (int i = 0; i < num_blocks; ++i) {
            Block block;
            block.block_id = i;
            block.ref_counts.resize(num_layers, 0);

            for (int layer = 0; layer < num_layers; ++layer) {
                block.keys.push_back(std::make_shared<Tensor<float>>(
                    Tensor<float>({block_size, 2, head_dim})));  // [seq, kv_heads, head_dim]
                block.values.push_back(std::make_shared<Tensor<float>>(
                    Tensor<float>({block_size, 2, head_dim})));
            }

            blocks_.push_back(std::move(block));
        }
    }

    // 分配块
    std::vector<int> allocate(int num_blocks, int layer) {
        std::vector<int> allocated;

        for (auto& block : blocks_) {
            if (block.ref_counts[layer] == 0) {
                block.ref_counts[layer] = 1;
                allocated.push_back(block.block_id);

                if (allocated.size() == num_blocks) {
                    break;
                }
            }
        }

        return allocated;
    }

    // 释放块
    void release(const std::vector<int>& block_ids, int layer) {
        for (int block_id : block_ids) {
            blocks_[block_id].ref_counts[layer]--;
        }
    }

    // 获取块指针
    Block* get_block(int block_id) {
        return &blocks_[block_id];
    }

private:
    int block_size_;
    int num_blocks_;
    int num_layers_;
    std::vector<Block> blocks_;
    int head_dim = 128;  // 默认头维度
};

// PagedAttention核心实现
template<typename T>
class PagedAttention {
public:
    struct Config {
        int num_heads;
        int num_kv_heads;
        int head_dim;
        int block_size;
        int num_blocks;
    };

    PagedAttention(const Config& config, KVCacheBlockManager* block_manager)
        : config_(config), block_manager_(block_manager) {}

    // 分配序列的KV缓存
    int allocate_sequence(int num_tokens) {
        int num_blocks = (num_tokens + config_.block_size - 1) / config_.block_size;

        Sequence seq;
        seq.seq_id = next_seq_id_++;
        seq.block_ids = block_manager_->allocate(num_blocks, /*layer=*/0);
        seq.num_tokens = 0;

        sequences_[seq.seq_id] = seq;
        return seq.seq_id;
    }

    // 追加token(解码阶段)
    void append_token(int seq_id,
                     const Tensor<T>& new_key,
                     const Tensor<T>& new_value,
                     int layer) {
        auto& seq = sequences_[seq_id];

        // 计算应该写入的块和偏移
        int block_idx = seq.num_tokens / config_.block_size;
        int offset = seq.num_tokens % config_.block_size;

        if (block_idx >= seq.block_ids.size()) {
            // 需要分配新块
            auto new_blocks = block_manager_->allocate(1, layer);
            seq.block_ids.push_back(new_blocks[0]);
        }

        // 写入KV缓存
        int block_id = seq.block_ids[block_idx];
        auto* block = block_manager_->get_block(block_id);

        write_to_block(block, new_key, new_value, offset, layer);

        seq.num_tokens++;
    }

    // PagedAttention计算
    Tensor<T> forward(int seq_id,
                     const Tensor<T>& query,
                     int layer) {
        const auto& seq = sequences_[seq_id];
        const auto& block_ids = seq.block_ids;

        int num_tokens = seq.num_tokens;
        int num_full_blocks = num_tokens / config_.block_size;
        int rem_tokens = num_tokens % config_.block_size;

        Tensor<T> output(query.shape());

        // 处理完整块
        for (int i = 0; i < num_full_blocks; ++i) {
            int block_id = block_ids[i];
            const auto* block = block_manager_->get_block(block_id);

            auto k_block = block->keys[layer];
            auto v_block = block->values[layer];

            // 计算当前块的注意力
            auto block_output = compute_attention_for_block(query, k_block, v_block);
            output = output + block_output;
        }

        // 处理部分块
        if (rem_tokens > 0 && num_full_blocks < block_ids.size()) {
            int block_id = block_ids[num_full_blocks];
            const auto* block = block_manager_->get_block(block_id);

            auto k_partial = block->keys[layer]->slice(/*dim=*/0, 0, rem_tokens);
            auto v_partial = block->values[layer]->slice(/*dim=*/0, 0, rem_tokens);

            auto partial_output = compute_attention_for_block(query, k_partial, v_partial);
            output = output + partial_output;
        }

        return output;
    }

private:
    Config config_;
    KVCacheBlockManager* block_manager_;
    int next_seq_id_ = 1;

    struct Sequence {
        int seq_id;
        std::vector<int> block_ids;
        int num_tokens;
    };

    std::unordered_map<int, Sequence> sequences_;

    void write_to_block(typename KVCacheBlockManager::Block* block,
                       const Tensor<T>& new_key,
                       const Tensor<T>& new_value,
                       int offset,
                       int layer) {
        // 写入指定偏移位置
        // 实现略
    }

    Tensor<T> compute_attention_for_block(const Tensor<T>& query,
                                         const std::shared_ptr<Tensor<float>>& k_block,
                                         const std::shared_ptr<Tensor<float>>& v_block) {
        // 计算单个块的注意力
        auto scores = matmul(query, transpose(*k_block, {0, 2, 1}));
        auto attn_weights = softmax(scores, /*dim=*/-1);
        return matmul(attn_weights, *v_block);
    }
};

} // namespace atb

2.3 连续批处理(Continuous Batching)

cpp 复制代码
#include "atb_scheduler.h"
#include <queue>
#include <vector>

namespace atb {

// 请求状态
enum class RequestState {
    WAITING,      // 等待处理
    PROCESSING,   // 正在处理
    COMPLETED     // 已完成
};

// 推理请求
struct InferenceRequest {
    int request_id;
    std::vector<int> input_tokens;
    std::vector<int> output_tokens;
    int max_tokens;
    RequestState state;
    int current_position;

    // KV缓存块引用
    std::vector<int> kv_block_ids;
};

// 连续批处理调度器
class ContinuousBatchingScheduler {
public:
    struct Config {
        int max_batch_size;      // 最大批次大小
        int max_num_seqs;        // 最大并发序列数
        int max_num_blocks;      // KV缓存块总数
        int block_size;          // 每块token数
    };

    ContinuousBatchingScheduler(const Config& config)
        : config_(config),
          block_manager_(config.block_size, config.max_num_blocks, 32) {}  // 假设32层

    // 添加新请求
    void add_request(std::shared_ptr<InferenceRequest> request) {
        waiting_queue_.push(request);
    }

    // 调度一个批次
    std::vector<std::shared_ptr<InferenceRequest>> schedule() {
        std::vector<std::shared_ptr<InferenceRequest>> batch;

        // 尝试添加等待中的请求
        while (!waiting_queue_.empty() && active_requests_.size() < config_.max_num_seqs) {
            auto request = waiting_queue_.front();
            waiting_queue_.pop();

            // 分配KV缓存
            int num_blocks = (request->input_tokens.size() + config_.block_size - 1)
                            / config_.block_size;
            auto blocks = block_manager_.allocate(num_blocks, /*layer=*/0);

            if (blocks.size() == num_blocks) {
                // 成功分配
                request->kv_block_ids = blocks;
                request->state = RequestState::PROCESSING;
                active_requests_[request->request_id] = request;
                batch.push_back(request);
            } else {
                // 内存不足,放回队列
                waiting_queue_.push(request);
                break;
            }
        }

        // 添加当前活跃的请求
        for (auto& [id, request] : active_requests_) {
            if (request->state == RequestState::PROCESSING &&
                batch.size() < config_.max_batch_size) {
                batch.push_back(request);
            }
        }

        return batch;
    }

    // 完成一个请求
    void complete_request(int request_id) {
        auto it = active_requests_.find(request_id);
        if (it != active_requests_.end()) {
            // 释放KV缓存
            block_manager_.release(it->second->kv_block_ids, /*layer=*/0);
            active_requests_.erase(it);
        }
    }

    // 步进:处理一个token
    void step() {
        auto batch = schedule();

        if (batch.empty()) {
            return;
        }

        // 准备批次数据
        BatchInput batch_input = prepare_batch_input(batch);

        // 执行模型推理
        auto batch_output = model_forward(batch_input);

        // 更新请求状态
        for (size_t i = 0; i < batch.size(); ++i) {
            auto& request = batch[i];

            if (request->current_position == 0) {
                // 处理阶段(prefill)
                request->current_position = request->input_tokens.size();
            } else {
                // 解码阶段(decode)
                int next_token = batch_output.tokens[i];
                request->output_tokens.push_back(next_token);

                if (next_token == EOS_TOKEN_ID ||
                    request->output_tokens.size() >= request->max_tokens) {
                    request->state = RequestState::COMPLETED;
                    complete_request(request->request_id);
                }
            }
        }
    }

private:
    Config config_;
    KVCacheBlockManager block_manager_;
    std::queue<std::shared_ptr<InferenceRequest>> waiting_queue_;
    std::unordered_map<int, std::shared_ptr<InferenceRequest>> active_requests_;

    static constexpr int EOS_TOKEN_ID = 0;  // 假设EOS token ID为0

    struct BatchInput {
        std::vector<int> token_ids;
        std::vector<std::vector<int>> kv_block_ids;
        std::vector<int> positions;
    };

    struct BatchOutput {
        std::vector<int> tokens;
    };

    BatchInput prepare_batch_input(const std::vector<std::shared_ptr<InferenceRequest>>& batch) {
        BatchInput batch_input;

        for (const auto& request : batch) {
            if (request->current_position == 0) {
                // Prefill阶段:所有输入token
                batch_input.token_ids.insert(batch_input.token_ids.end(),
                                            request->input_tokens.begin(),
                                            request->input_tokens.end());
                batch_input.positions.push_back(0);  // 标记为prefill
            } else {
                // Decode阶段:下一个token
                batch_input.token_ids.push_back(
                    request->output_tokens.empty() ?
                    request->input_tokens.back() :
                    request->output_tokens.back()
                );
                batch_input.positions.push_back(request->output_tokens.size());
            }

            batch_input.kv_block_ids.push_back(request->kv_block_ids);
        }

        return batch_input;
    }

    BatchOutput model_forward(const BatchInput& batch_input) {
        // 模型前向传播(简化)
        BatchOutput output;
        // ... 实际调用模型推理
        return output;
    }
};

} // namespace atb

2.4 量化优化

cpp 复制代码
#include "atb_quantization.h"
#include <cmath>

namespace atb {

// INT8量化
template<typename T>
class INT8Quantizer {
public:
    struct QuantizedTensor {
        Tensor<int8_t> data;      // 量化后的数据
        float scale;              // 缩放因子
        T zero_point;             // 零点
    };

    // 对称量化(zero_point = 0)
    static QuantizedTensor quantize_symmetric(const Tensor<T>& input) {
        QuantizedTensor result;

        // 计算缩放因子: scale = max(abs(x)) / 127
        T max_abs = 0;
        for (size_t i = 0; i < input.size(); ++i) {
            max_abs = std::max(max_abs, std::abs(input.data()[i]));
        }

        result.scale = max_abs / 127.0f;
        result.zero_point = 0;

        // 量化
        result.data = Tensor<int8_t>(input.shape());
        for (size_t i = 0; i < input.size(); ++i) {
            result.data.data()[i] = static_cast<int8_t>(
                std::round(input.data()[i] / result.scale)
            );
        }

        return result;
    }

    // 非对称量化
    static QuantizedTensor quantize_asymmetric(const Tensor<T>& input) {
        QuantizedTensor result;

        // 计算最小最大值
        T min_val = input.data()[0];
        T max_val = input.data()[0];
        for (size_t i = 0; i < input.size(); ++i) {
            min_val = std::min(min_val, input.data()[i]);
            max_val = std::max(max_val, input.data()[i]);
        }

        // 计算scale和zero_point
        // q = (x - min) * 255 / (max - min) - 128
        // scale = 255 / (max - min)
        // zero_point = -128 - min / scale
        result.scale = 255.0f / (max_val - min_val);
        result.zero_point = static_cast<T>(-128 - min_val * result.scale);

        // 量化
        result.data = Tensor<int8_t>(input.shape());
        for (size_t i = 0; i < input.size(); ++i) {
            result.data.data()[i] = static_cast<int8_t>(
                std::round(input.data()[i] * result.scale + result.zero_point)
            );
        }

        return result;
    }

    // 反量化
    static Tensor<T> dequantize(const QuantizedTensor& quantized) {
        Tensor<T> output(quantized.data.shape());

        for (size_t i = 0; i < quantized.data.size(); ++i) {
            output.data()[i] = (quantized.data.data()[i] - quantized.zero_point)
                             / quantized.scale;
        }

        return output;
    }
};

// INT4量化(用于权重量化)
template<typename T>
class INT4WeightQuantizer {
public:
    struct INT4Block {
        std::vector<uint8_t> packed_data;  // 每个字节存储2个INT4
        std::vector<float> scales;         // 每组一个scale
        std::vector<float> zero_points;    // 每组一个zero_point
    };

    // 分组量化(group_size个权重共享一个scale)
    static INT4Block quantize_grouped(const Tensor<T>& weights, int group_size = 128) {
        INT4Block result;

        int num_groups = (weights.size() + group_size - 1) / group_size;
        result.scales.resize(num_groups);
        result.zero_points.resize(num_groups);
        result.packed_data.resize((weights.size() + 1) / 2);

        for (int g = 0; g < num_groups; ++g) {
            int start = g * group_size;
            int end = std::min(start + group_size, static_cast<int>(weights.size()));

            // 计算当前组的scale
            T max_val = weights.data()[start];
            for (int i = start; i < end; ++i) {
                max_val = std::max(max_val, weights.data()[i]);
            }

            result.scales[g] = max_val / 7.0f;  // INT4范围: [-8, 7]
            result.zero_points[g] = 0.0f;       // 对称量化

            // 量化并打包
            for (int i = start; i < end; i += 2) {
                int8_t q0 = static_cast<int8_t>(
                    std::round(weights.data()[i] / result.scales[g])
                );
                int8_t q1 = (i + 1 < end) ? static_cast<int8_t>(
                    std::round(weights.data()[i + 1] / result.scales[g])
                ) : 0;

                // 打包: q1在高位,q0在低位
                result.packed_data[i / 2] = ((q1 & 0x0F) << 4) | (q0 & 0x0F);
            }
        }

        return result;
    }

    // INT4反量化
    static Tensor<T> dequantize_grouped(const INT4Block& block,
                                       const std::vector<int>& shape,
                                       int group_size = 128) {
        Tensor<T> weights(shape);

        int num_groups = (weights.size() + group_size - 1) / group_size;

        for (int g = 0; g < num_groups; ++g) {
            float scale = block.scales[g];

            int start = g * group_size;
            int end = std::min(start + group_size, static_cast<int>(weights.size()));

            for (int i = start; i < end; i += 2) {
                uint8_t packed = block.packed_data[i / 2];
                int8_t q0 = static_cast<int8_t>(packed & 0x0F);
                int8_t q1 = static_cast<int8_t>((packed >> 4) & 0x0F);

                // 符号扩展(INT4是有符号的)
                if (q0 > 7) q0 -= 16;
                if (q1 > 7) q1 -= 16;

                weights.data()[i] = q0 * scale;
                if (i + 1 < end) {
                    weights.data()[i + 1] = q1 * scale;
                }
            }
        }

        return weights;
    }
};

// 动态量化(激活值量化)
class DynamicQuantizer {
public:
    template<typename T>
    struct DynamicQuantizedOutput {
        Tensor<int8_t> activations;
        float scale;
    };

    template<typename T>
    static DynamicQuantizedOutput<T> quantize_activations(const Tensor<T>& input) {
        DynamicQuantizedOutput<T> result;

        // 每个样本独立量化
        int batch_size = input.shape(0);
        int seq_len = input.shape(1);
        int hidden = input.shape(2);

        result.activations = Tensor<int8_t>(input.shape());

        for (int b = 0; b < batch_size; ++b) {
            for (int s = 0; s < seq_len; ++s) {
                // 计算当前token的scale
                float max_abs = 0;
                for (int h = 0; h < hidden; ++h) {
                    max_abs = std::max(max_abs,
                                      std::abs(input.get_value(b, s, h)));
                }

                float scale = max_abs / 127.0f;

                // 量化
                for (int h = 0; h < hidden; ++h) {
                    int8_t q = static_cast<int8_t>(
                        std::round(input.get_value(b, s, h) / scale)
                    );
                    result.activations.set_value(q, b, s, h);
                }

                // 存储scale(简化起见,这里使用相同的scale)
                result.scale = scale;
            }
        }

        return result;
    }
};

} // namespace atb

2.5 算子融合实现

cpp 复制代码
#include "atb_fusion.h"

namespace atb {

// 融合RMSNorm、Residual和多层投影
template<typename T>
class FusedTransformerBlock {
public:
    struct Config {
        int hidden_size;
        int num_heads;
        int head_dim;
        int intermediate_size;
        float epsilon;
    };

    FusedTransformerBlock(const Config& config)
        : config_(config) {
        // 初始化所有权重
        init_weights();
    }

    // 融合前向传播
    Tensor<T> forward(const Tensor<T>& input,
                     const Tensor<T>& residual,
                     KVCache& kv_cache,
                     int position) {
        // 融合操作1: RMSNorm + QKV投影 + RoPE
        auto [q, k, v] = fused_norm_qkv_rope(input, kv_cache, position);

        // 融合操作2: Flash Attention
        auto attn_output = flash_attention(q, k, v);

        // 融合操作3: 残差连接 + RMSNorm + FFN门控
        auto hidden = fused_residual_norm_ffn(residual, attn_output);

        return hidden;
    }

private:
    Config config_;
    Tensor<T> q_weight_, k_weight_, v_weight_, o_weight_;
    Tensor<T> gate_weight_, up_weight_, down_weight_;
    Tensor<T> norm_weight_;

    void init_weights() {
        // 初始化各层权重
        q_weight_ = Tensor<T>({config_.hidden_size,
                              config_.num_heads * config_.head_dim});
        k_weight_ = Tensor<T>({config_.hidden_size,
                              config_.num_heads * config_.head_dim});
        v_weight_ = Tensor<T>({config_.hidden_size,
                              config_.num_heads * config_.head_dim});
        o_weight_ = Tensor<T>({config_.num_heads * config_.head_dim,
                              config_.hidden_size});

        gate_weight_ = Tensor<T>({config_.hidden_size,
                                 config_.intermediate_size});
        up_weight_ = Tensor<T>({config_.hidden_size,
                               config_.intermediate_size});
        down_weight_ = Tensor<T>({config_.intermediate_size,
                                 config_.hidden_size});

        norm_weight_ = Tensor<T>({config_.hidden_size});
        norm_weight_.fill(1.0f);
    }

    // 融合: RMSNorm -> QKV投影 -> RoPE
    std::tuple<Tensor<T>, Tensor<T>, Tensor<T>>
    fused_norm_qkv_rope(const Tensor<T>& input,
                       KVCache& kv_cache,
                       int position) {
        int batch = input.shape(0);
        int seq_len = input.shape(1);
        int hidden = input.shape(2);

        Tensor<T> q({batch, config_.num_heads, seq_len, config_.head_dim});
        Tensor<T> k({batch, config_.num_heads, seq_len, config_.head_dim});
        Tensor<T> v({batch, config_.num_heads, seq_len, config_.head_dim});

        // 单次遍历完成所有操作
        for (int b = 0; b < batch; ++b) {
            for (int s = 0; s < seq_len; ++s) {
                // 计算RMS(在片上累加)
                float sum_sq = 0;
                std::vector<float> normalized(hidden);

                for (int h = 0; h < hidden; ++h) {
                    float val = input.get_value(b, s, h);
                    sum_sq += val * val;
                }

                float rms = std::sqrt(sum_sq / hidden + config_.epsilon);

                // QKV投影 + RoPE(融合计算)
                for (int head = 0; head < config_.num_heads; ++head) {
                    for (int d = 0; d < config_.head_dim; ++d) {
                        int h_idx = head * config_.head_dim + d;

                        // RMSNorm + 投影
                        float normed = input.get_value(b, s, h_idx) / rms;

                        float q_val = normed * q_weight_.get_value(h_idx, head * config_.head_dim + d);
                        float k_val = normed * k_weight_.get_value(h_idx, head * config_.head_dim + d);
                        float v_val = normed * v_weight_.get_value(h_idx, head * config_.head_dim + d);

                        // 应用RoPE(旋转位置编码)
                        int pos = position + s;
                        float freq = std::pow(10000.0f, -2.0f * d / config_.head_dim);
                        float angle = pos * freq;
                        float cos_val = std::cos(angle);
                        float sin_val = std::sin(angle);

                        // q_rotated = q * cos + k * sin(简化版本)
                        if (d % 2 == 0) {
                            q.set_value(q_val * cos_val - k_val * sin_val, b, head, s, d);
                            k.set_value(k_val * cos_val + q_val * sin_val, b, head, s, d);
                        } else {
                            q.set_value(q_val * cos_val + k_val * sin_val, b, head, s, d);
                            k.set_value(k_val * cos_val - q_val * sin_val, b, head, s, d);
                        }

                        v.set_value(v_val, b, head, s, d);

                        // 存储到KV缓存
                        kv_cache.store_key(b, head, position + s, d, k.get_value(b, head, s, d));
                        kv_cache.store_value(b, head, position + s, d, v.get_value(b, head, s, d));
                    }
                }
            }
        }

        return {q, k, v};
    }

    // Flash Attention
    Tensor<T> flash_attention(const Tensor<T>& q,
                             const Tensor<T>& k,
                             const Tensor<T>& v) {
        // Flash Attention实现
        // ...(参见前面FlashAttentionV2的实现)
        return Tensor<T>({1, 1, 1, 1});  // 简化
    }

    // 融合: 残差连接 + RMSNorm + SwiGLU FFN
    Tensor<T> fused_residual_norm_ffn(const Tensor<T>& residual,
                                     const Tensor<T>& attn_output) {
        int batch = attn_output.shape(0);
        int seq_len = attn_output.shape(1);
        int hidden = attn_output.shape(2);

        Tensor<T> output({batch, seq_len, hidden});

        for (int b = 0; b < batch; ++b) {
            for (int s = 0; s < seq_len; ++s) {
                // 残差连接
                std::vector<float> hidden_states(hidden);
                for (int h = 0; h < hidden; ++h) {
                    hidden_states[h] = residual.get_value(b, s, h) +
                                      attn_output.get_value(b, s, h);
                }

                // RMSNorm
                float sum_sq = 0;
                for (int h = 0; h < hidden; ++h) {
                    sum_sq += hidden_states[h] * hidden_states[h];
                }
                float rms = std::sqrt(sum_sq / hidden + config_.epsilon);

                // SwiGLU FFN
                for (int i = 0; i < config_.intermediate_size; ++i) {
                    float gate = 0;
                    float up = 0;

                    // 门控和上行投影
                    for (int h = 0; h < hidden; ++h) {
                        float normed = hidden_states[h] / rms;
                        gate += normed * gate_weight_.get_value(h, i);
                        up += normed * up_weight_.get_value(h, i);
                    }

                    // SwiGLU激活
                    float swish = gate / (1.0f + std::exp(-gate));
                    float activated = swish * up;

                    // 下行投影
                    for (int h = 0; h < hidden; ++h) {
                        output.set_value(
                            output.get_value(b, s, h) + activated * down_weight_.get_value(i, h),
                            b, s, h
                        );
                    }
                }
            }
        }

        return output;
    }
};

} // namespace atb

三、Python调用接口

ATB提供了简洁的Python接口:

python 复制代码
import atb
import torch

# ===== 基础推理引擎 =====
class ATBInferenceEngine:
    def __init__(self, model_path, config):
        self.config = config
        self.model = atb.load_model(model_path, config)

        # 初始化KV缓存管理器
        self.kv_cache = atb.KVCacheManager(
            num_blocks=config.max_num_blocks,
            block_size=config.block_size,
            num_layers=config.num_hidden_layers
        )

        # 初始化调度器
        self.scheduler = atb.ContinuousBatchingScheduler(
            max_batch_size=config.max_batch_size,
            max_num_seqs=config.max_num_seqs,
            kv_cache_manager=self.kv_cache
        )

    def generate(self, prompt_ids, max_new_tokens=128):
        """文本生成"""
        # 创建推理请求
        request = atb.InferenceRequest(
            prompt_ids=prompt_ids,
            max_tokens=max_new_tokens
        )

        # 添加到调度器
        self.scheduler.add_request(request)

        # 迭代生成
        output_tokens = []
        while not request.is_complete():
            # 获取批次
            batch = self.scheduler.schedule()

            if not batch:
                break

            # 批量推理
            for req in batch:
                if req.current_position == 0:
                    # Prefill阶段
                    logits = self.model.prefill(
                        input_ids=req.prompt_ids,
                        kv_cache=self.kv_cache.get_cache(req.request_id)
                    )
                else:
                    # Decode阶段
                    logits = self.model.decode(
                        input_ids=[req.last_token],
                        position=req.current_position,
                        kv_cache=self.kv_cache.get_cache(req.request_id)
                    )

                # 采样下一个token
                next_token = self._sample(logits)
                req.append_token(next_token)

            # 更新请求状态
            self.scheduler.update_batch(batch)

        return request.output_tokens

    def _sample(self, logits, temperature=1.0, top_k=50):
        """采样下一个token"""
        logits = logits[0, -1, :] / temperature

        if top_k > 0:
            values, indices = torch.topk(logits, top_k)
            logits = torch.full_like(logits, float('-inf'))
            logits.scatter_(0, indices, values)

        probs = torch.softmax(logits, dim=-1)
        next_token = torch.multinomial(probs, num_samples=1)

        return next_token.item()

# ===== 量化示例 =====
def quantization_example():
    # 加载模型
    model = atb.load_model("llama-7b")

    # INT4权重量化
    quantizer = atb.INT4Quantizer(group_size=128)
    quantized_model = quantizer.quantize_model(model)

    # 保存量化模型
    atb.save_model(quantized_model, "llama-7b-int4.pt")

    # 测试精度
    test_input = torch.randint(0, 32000, (1, 128))
    with torch.no_grad():
        original_output = model(test_input)
        quantized_output = quantized_model(test_input)

    error = torch.abs(original_output - quantized_output).mean()
    print(f"量化误差: {error:.6f}")

# ===== 连续批处理示例 =====
def continuous_batching_example():
    config = atb.InferenceConfig(
        max_batch_size=32,
        max_num_seqs=128,
        max_num_blocks=1024,
        block_size=16
    )

    engine = ATBInferenceEngine("llama-7b.pt", config)

    # 模拟多个并发请求
    prompts = [
        [1, 2, 3, 4, 5],
        [6, 7, 8, 9, 10],
        [11, 12, 13, 14, 15]
    ]

    # 添加所有请求
    requests = []
    for i, prompt in enumerate(prompts):
        req = atb.InferenceRequest(
            request_id=i,
            prompt_ids=prompt,
            max_tokens=100
        )
        engine.scheduler.add_request(req)
        requests.append(req)

    # 并发处理
    completed = 0
    step = 0
    while completed < len(requests):
        batch = engine.scheduler.schedule()

        if batch:
            # 处理批次
            for req in batch:
                if req.current_position == 0:
                    logits = engine.model.prefill(req.prompt_ids)
                else:
                    logits = engine.model.decode([req.last_token])

                next_token = engine._sample(logits)
                req.append_token(next_token)

                if req.is_complete():
                    completed += 1
                    print(f"请求 {req.request_id} 完成: {req.output_tokens}")

        step += 1

# ===== 性能测试 =====
def benchmark():
    import time

    config = atb.InferenceConfig(
        max_batch_size=1,
        max_num_seqs=1,
        max_num_blocks=512,
        block_size=16
    )

    engine = ATBInferenceEngine("llama-7b.pt", config)

    # 测试首token延迟(TTFT)
    prompt = [1, 2, 3, 4, 5] * 20  # 100 tokens
    start = time.time()

    output = engine.generate(prompt, max_new_tokens=1)

    ttft = (time.time() - start) * 1000  # 毫秒
    print(f"首Token延迟 (TTFT): {ttft:.2f} ms")

    # 测试吞吐量(TPOT)
    prompt = [1, 2, 3, 4, 5]
    start = time.time()

    output = engine.generate(prompt, max_new_tokens=100)

    total_time = time.time() - start
    tpot = (total_time / len(output)) * 1000
    throughput = len(output) / total_time

    print(f"每Token延迟 (TPOT): {tpot:.2f} ms")
    print(f"吞吐量: {throughput:.2f} tokens/sec")

if __name__ == "__main__":
    # 运行示例
    print("=== 量化示例 ===")
    quantization_example()

    print("\n=== 连续批处理示例 ===")
    continuous_batching_example()

    print("\n=== 性能测试 ===")
    benchmark()

四、性能对比与优化建议

4.1 优化技术性能对比

优化技术 延迟改善 吞吐量改善 显存节省
FlashAttention 40-60% 2-3x 30-50%
PagedAttention 20-30% 3-5x 40-60%
连续批处理 10-20% 3-5x -
INT4量化 10-20% 1.5-2x 75%
算子融合 15-25% 1.5-2x 20-30%

4.2 不同场景推荐配置

场景 推荐配置 预期性能
单用户实时对话 batch_size=1, INT4, FlashAttention TTFT<100ms
多用户并发服务 连续批处理, PagedAttention 吞吐量>1000 tok/s
离线批量处理 大batch, 无KV缓存优化 最大吞吐
边缘设备部署 INT4, 量化感知训练 显存<8GB

4.3 最佳实践

  1. 根据场景选择优化策略

    • 实时对话:优先优化TTFT
    • 批量处理:优先优化吞吐量
  2. 合理配置KV缓存

    • 根据并发量调整块数量
    • 选择合适的块大小(通常16-32)
  3. 量化策略

    • 权重:INT4(精度损失小)
    • 激活:INT8(需要校准)
  4. 监控关键指标

    • TTFT、TPOT、显存使用率

五、总结

ascend-transformer-boost为CANN生态提供了全面的大模型推理加速方案:

  1. 核心优化技术:FlashAttention、PagedAttention、连续批处理
  2. 显存优化:KV缓存管理、量化压缩
  3. 性能提升:延迟降低60%+,吞吐量提升5x+
  4. 灵活部署:支持不同规模和场景

通过ATB,开发者可以高效部署大模型应用,实现毫秒级响应的实时推理体验。


相关链接

相关推荐
智驱力人工智能5 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_160144875 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile5 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能5775 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥5 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
kfyty7255 小时前
集成 spring-ai 2.x 实践中遇到的一些问题及解决方案
java·人工智能·spring-ai
h64648564h6 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切6 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
数据与后端架构提升之路6 小时前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全