机器学习介绍

机器学习基本术语:

数据集

数据记录的集合称为一个"数据集" (data set)

样本

数据集中每条记录是关于一个事件或对象的描述,称为"样本"

特征

反映事件或对象在某方面的表现或性质的事项,例如"色泽"

属性空间

属性张成的空间称为"属性空间" 或"样本空间

向量

一般地,令D = {x1 x2.. xm } 表示包含m 个示例的数据集,每个样本由d 个属性描述,则每个样本xi = (xi1; xi2; . . . ; xid) 是d 维样本空间X中的一个向量,d 称为样本Xi的"维数"

训练集:机器学习中用于训练模型的数据集合,包含标记信息

测试集:机器学习中用于测试模型的数据集合

监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程。

监督学习的数据集由"正确答案"(标记)组成。

监督学习分为两大类

分类:机器学习模型输出的结果被限定为有限的一组值,即离散型数值。

回归:机器学习模型的输出可以是某个范围内的任何数值,即连续型数值。

无监督学习:提供数据集合但是不提供标记信息的学习过程

模型评估与选择

残差:学习器的实际预测输出与样本的真实输出之间的差异

学习器在训练集上的误差称为"训练误差"或"经验误差"

学习器在新样本上的误差称为"泛化误差"

欠拟合:模型没有很好的捕捉到数据特征、特征集过小导致模型不能很好的拟合数据。欠拟合本质上是对数据特征学习的不够

过拟合:把训练数据学习的太彻底,以至于把噪声数据的特征也学习到了,特征集过大,这样就会导致在后期测试的时候不能够很好的识别数据,不能正确的分类,模型泛化能力太差。

过拟合的处理方式: 1. 增加训练数据:更多的样本能够让模型学习到更多更有效的特征,减小噪声的影响。 2. 降维:即丢弃一些不能帮助我们正确预测的特征。 3. 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude),它可以改善或者减少过拟合问题。 4. 集成学习方法:集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。

欠拟合的处理方式: 1. 添加新特征,当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。 2. 增加模型复杂度:简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能力。 3. 减小正则化系数:正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。

模型评估:

TP(True positive,真正例)------将正类预测为正类数。

FP(False postive,假正例)------将反类预测为正类数。

TN(True negative,真反例)------将反类预测为反类数。

FN(False negative,假反例)------将正类预测为反类数。

P-R 图直观地显示出学习器在样本总体上的查全率、查准率。在进行比较时,若一个学习器的P-R 曲线被另一个学习器的曲线完全"包住",则可断言后者的性能优于前者 图中学习器A 的性能优于学习器C;如果两个学习器的P-R 曲线发生了交叉,图中的A 与B ,则难以一般性地断言两者孰优孰劣。

相关推荐
TextIn智能文档云平台10 分钟前
LLM 文档处理:如何让 AI 更好地理解中文 PDF 中的复杂格式?
人工智能·pdf
Blossom.11811 分钟前
把AI“撒”进农田:基于极值量化与状态机的1KB边缘灌溉决策树
人工智能·python·深度学习·算法·目标检测·决策树·机器学习
takashi_void23 分钟前
本地实现斯坦福小镇(利用大语言模型使虚拟角色自主发展剧情)类似项目“Microverse”
人工智能·语言模型·自然语言处理·godot·游戏程序·斯坦福小镇
zxsz_com_cn1 小时前
设备健康管理大数据平台:工业智能化的核心数据引擎
运维·人工智能
算家计算1 小时前
破5亿用户!国产AI模型成功逆袭,成为AI普及浪潮主角
人工智能·开源·资讯
Jolie_Liang1 小时前
国内金融领域元宇宙金融特殊需求与技术挑战研究报告
人工智能·元宇宙
算家计算1 小时前
SAIL-VL2本地部署教程:2B/8B参数媲美大规模模型,为轻量级设备量身打造的多模态大脑
人工智能·开源·aigc
Costrict1 小时前
解锁新阵地!CoStrict 现已支持 JetBrains 系列 IDE
大数据·ide·人工智能·深度学习·自然语言处理·ai编程·visual studio
姚家湾1 小时前
MAC mini /绿联NAS 上安装本地AFFiNE
人工智能·affine
Python智慧行囊1 小时前
图像处理-opencv(二)-形态学
人工智能·计算机视觉