第四章:大模型(LLM)】06.langchain原理-(3)LangChain Prompt 用法

第四章:大模型(LLM)

第六部分:LangChain 原理

第三节:LangChain Prompt 用法

Prompt 在 LangChain 中处于核心地位。它决定了模型接收的上下文和指令,从而直接影响输出质量。LangChain 针对 Prompt 做了高度抽象和封装,主要包含以下几个方面:


1. Prompt 的基本概念

  • Prompt:输入给 LLM 的文本(可能包含占位符、上下文、指令等)。

  • PromptTemplate :LangChain 对 Prompt 的抽象,用来支持动态插值可复用模板

  • MessagePromptTemplate:用于多轮对话,支持 System / Human / AI 多角色消息。

  • ChatPromptTemplate:封装一组消息模板,便于和聊天模型结合。


2. PromptTemplate 使用

python 复制代码
from langchain.prompts import PromptTemplate

template = "请用一句话总结以下内容:{text}"
prompt = PromptTemplate(
    input_variables=["text"],
    template=template,
)

# 渲染
final_prompt = prompt.format(text="LangChain 是一个用于构建大模型应用的框架。")
print(final_prompt)
# 输出: 请用一句话总结以下内容:LangChain 是一个用于构建大模型应用的框架。

特点:

  • 模板中使用 {变量名} 作为占位符。

  • input_variables 定义可替换的变量。


3. ChatPromptTemplate(对话型提示)

python 复制代码
from langchain.prompts import ChatPromptTemplate

chat_prompt = ChatPromptTemplate.from_messages([
    ("system", "你是一个乐于助人的助手。"),
    ("human", "请将以下内容翻译成英文:{text}")
])

final_prompt = chat_prompt.format_messages(text="你好,世界!")
print(final_prompt)

输出是多条消息,适配聊天模型(如 OpenAI ChatCompletion)。


4. Few-shot Prompt(小样本提示)

python 复制代码
from langchain.prompts import FewShotPromptTemplate

examples = [
    {"question": "2+2等于几?", "answer": "4"},
    {"question": "3+5等于几?", "answer": "8"},
]

example_prompt = PromptTemplate(
    input_variables=["question", "answer"],
    template="Q: {question}\nA: {answer}"
)

few_shot_prompt = FewShotPromptTemplate(
    examples=examples,
    example_prompt=example_prompt,
    suffix="Q: {input}\nA:",
    input_variables=["input"],
)

print(few_shot_prompt.format(input="10+15等于几?"))

通过示例引导模型学习回答模式。


5. Prompt 的链式组合

Prompt 可以和 ChainMemory 结合:

  • Chain + Prompt:先动态生成 Prompt,再传给 LLM。

  • Memory + Prompt:记忆组件自动填充 Prompt 的历史对话部分。


6. 实战技巧

  1. 少即是多:Prompt 过长可能导致 LLM 迷失重点。

  2. 角色扮演:在 Prompt 中设置 AI 的身份,可改善回答风格。

  3. 输出约束:通过 JSON Schema、格式提示,提高结果可解析性。

  4. 动态拼接:结合外部数据源动态注入 Prompt。


7. 小结

  • LangChain 的 Prompt 系统提供了 灵活可重用的模板机制

  • PromptTemplateChatPromptTemplate,再到 FewShotPromptTemplate,逐步增强了 Prompt 的表达能力。

  • 配合 Chain / Memory,可以实现高度自动化的 Prompt 生成。

相关推荐
likunyuan08302 分钟前
概率统计中的数学语言与术语1
人工智能·机器学习·概率论
qq_3148108116 分钟前
AI与IT人:协作而非替代
人工智能
骑猪兜风23324 分钟前
深度解析 ChatGPT 和 Claude 的记忆机制
人工智能·chatgpt·ai编程
蒋星熠41 分钟前
脑机接口(BCI):从信号到交互的工程实践
人工智能·python·神经网络·算法·机器学习·ai·交互
gc_229943 分钟前
学习Python中Selenium模块的基本用法(17:使用ActionChains操作键盘)
python·selenium
liuyao_xianhui44 分钟前
四数之和_优选算法(C++)双指针法总结
java·开发语言·c++·算法·leetcode·职场和发展
大模型铲屎官1 小时前
【数据结构与算法-Day 37】超越二分查找:探索插值、斐波那契与分块查找的奥秘
人工智能·python·大模型·二分查找·数据结构与算法·斐波那契·分块查找
blank@l1 小时前
Python类和对象----实例属性,类属性(这是我理解类和对象最透彻的一次!!)
开发语言·python·python接口自动化基础·python类和对象·python实例属性·python类属性·类属性和实例属性的区别
超奇电子1 小时前
高斯包络调制正弦波的Python代码
开发语言·python
数智顾问1 小时前
Transformer模型:深度解析自然语言处理的革命性架构——从注意力机制到基础架构拆解
人工智能·rnn·深度学习