aisuite:统一的大模型SDK,简化LLM开发流程

随着LLM提供商的不断增加,开发者面临的挑战也在增加:

● API碎片化:每个提供商的API设计和调用方式不同,增加了学习和维护成本。

● 配置复杂性:不同模型的配置参数和格式各异,导致集成工作量大。

● 模型切换困难:在多个模型之间切换需要大量的代码修改和测试。 为了解决这一问题,吴恩达团队推出了aisuite,一个开源的Python库,旨在对流行的LLM提供商进行集成,方便开发者快速接入不同的模型。

AISuite简介

aisuite是一个轻量级的封装层,提供统一的接口,使开发者能够通过简单的provider:model字符串(例如openai:gpt-4o或anthropic:claude-3-5)在不同的LLM之间切换,而无需重写大量代码。

核心特点

● 统一接口:简化了不同LLM之间的调用差异,降低了迁移成本。

● 灵活切换模型:只需修改模型名称即可切换不同提供商的模型。

● 扩展性强:支持多种LLM提供商,如OpenAI、Anthropic、Google、AWS、Azure、Groq、Mistral、HuggingFace和Ollama等。

支持的模型提供商

支持以下11种模型提供商:

● Anthropic

● AWS

● Azure

● Cerebras

● Google

● Groq

● HuggingFace Ollama

● Mistral

● OpenAI

● Sambanova

● Watsonx

快速上手

以下是使用aisuite进行多LLM调用的基本步骤:

安装依赖

bash 复制代码
uv venv
source .venv/bin/activate  # Linux/macOS
pip install aisuite[all] openai python-dotenv

配置API密钥

.env文件中添加各LLM提供商的API密钥:

bash 复制代码
OPENAI_API_KEY=your_openai_key
ANTHROPIC_API_KEY=your_anthropic_key

编写查询函数

javascript 复制代码
import aisuite as ai
client = ai.Client()

models = ["openai:gpt-4o", "anthropic:claude-3-5-sonnet-20240620"]

messages = [
    {"role": "system", "content": "Respond in Pirate English."},
    {"role": "user", "content": "Tell me a joke."},
]

for model in models:
    response = client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=0.75
    )
    print(response.choices[0].message.content)

通过上述代码,开发者可以轻松地在不同的LLM模型之间切换,比较它们的输出结果,从而选择最适合特定任务的模型。

工具调用

aisuite为跨支持提供商的工具/函数调用提供了一个简单的抽象层,工具调用抽象使得在不更改代码的情况下,轻松地将工具与不同的大语言模型结合使用。使用aisuite调用工具的方式有两种:

1. 手动工具处理

这是在未指定max_turns时的默认行为,以OpenAI兼容的格式传递工具。

javascript 复制代码
def will_it_rain(location: str, time_of_day: str):
    """Check if it will rain in a location at a given time today.
    
    Args:
        location (str): Name of the city
        time_of_day (str): Time of the day in HH:MM format.
    """
    return "YES"

tools = [{
    "type": "function",
    "function": {
        "name": "will_it_rain",
        "description": "Check if it will rain in a location at a given time today",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "Name of the city"
                },
                "time_of_day": {
                    "type": "string",
                    "description": "Time of the day in HH:MM format."
                }
            },
            "required": ["location", "time_of_day"]
        }
    }
}]

response = client.chat.completions.create(
    model="openai:gpt-4o",
    messages=messages,
    tools=tools
)

2. 自动工具执行

当指定了max_turns时,可以将可调用的Python函数列表作为工具参数传递,aisuite将自动处理工具调用流程。

javascript 复制代码
def will_it_rain(location: str, time_of_day: str):
    """Check if it will rain in a location at a given time today.
    
    Args:
        location (str): Name of the city
        time_of_day (str): Time of the day in HH:MM format.
    """
    return "YES"

client = ai.Client()
messages = [{
    "role": "user",
    "content": "I live in San Francisco. Can you check for weather "
               "and plan an outdoor picnic for me at 2pm?"
}]


# Automatic tool execution with max_turns
response = client.chat.completions.create(
    model="openai:gpt-4o",
    messages=messages,
    tools=[will_it_rain],
    max_turns=2  # Maximum number of back-and-forth tool calls
)
print(response.choices[0].message.content)

当指定max_turns时,aisuite将:

  1. 将消息发送给大语言模型
  2. 执行大语言模型请求的任何工具调用
  3. 将工具结果发送回大语言模型
  4. 重复上述步骤,直到对话结束或达到max_turns

总结

aisuite作为一个开源的Python库,通过提供统一的接口和灵活的模型切换机制,简化了跨多个LLM提供商的集成过程。对于经常使用不同LLM的开发者来说,可以显著降低开发门槛,提高开发效率,是不容错过的选择。

相关推荐
RainbowSea6 分钟前
1. LangChain4J 理论概述
java·langchain·llm
RainbowSea34 分钟前
2. LangChain4J 中的 Hello World
langchain·llm·ai编程
用户4183785530051 小时前
从零开始训练一个LLM
llm
掘我的金1 小时前
POML 语法基础(Language Basics)
llm
掘我的金1 小时前
POML 模板引擎(Template Engine)
llm
811733 小时前
我开发了一个面向大模型训练的数据集构建平台:DatasetLoom
开源·llm
机器之心3 小时前
全球开源大模型,前十五名全是中国的
人工智能·openai
W-GEO4 小时前
GEO优化策略:AI搜索引擎的“动态响应”与GEO优化公司的实时优化能力
大数据·人工智能·chatgpt
GEO_JYB4 小时前
2025生成式引擎优化(GEO)技术研究报告:技术演进、行业应用与服务商能力选择指南
人工智能·chatgpt