支持向量机

支持向量机(SVM)知识点总结

1. 基本思想

  • 目标:在样本空间中找到一个划分超平面,将不同类别的样本分开。

  • 理想超平面:对训练样本局部扰动"容忍性"最好的超平面。

2. 优化目标

  • 最大化间隔(Margin)

    SVM的核心思想是寻找一个超平面,使得该超平面到最近样本点的距离(即"间隔")最大化,从而提高泛化能力。

3. 支持向量(Support Vectors)

  • 位于间隔边界上的样本点,直接影响超平面的位置和方向。

  • 只有支持向量参与决策,其他样本点对超平面无影响。

4. 超平面(Hyperplane)

  • 定义:超平面是从n维空间到n-1维空间的一个映射子空间,由一个n维向量和一个实数定义。

  • 示例

    • 三维空间:超平面为二维平面。

    • 二维空间:超平面为一维直线。

  • 超平面方程

    wTx+b=0

    其中,w 为法向量,b 为偏置项。

5. 点到超平面的距离

  • 点 x 到超平面 wTx+b=0 的距离公式:

    距离=∥w∥∣wTx+b∣


支持向量机(SVM)学习笔记

核心思想

支持向量机(SVM)是一种经典的监督学习方法,主要用于分类任务。其核心思想是在样本空间中找到一个最优的超平面,使得不同类别的样本被有效分离,并且超平面对训练数据的局部扰动具有最好的"容忍性"。

优化目标

  • 最大化间隔(Margin)

    SVM通过最大化超平面到最近样本点的距离(即"间隔"),来提高模型的泛化能力。间隔越大,模型对未知数据的预测能力越强。

支持向量(Support Vectors)

  • 定义:支持向量是指位于间隔边界上的样本点,这些点直接决定了超平面的位置和方向。

  • 特点

    • 只有支持向量参与超平面的确定。

    • 移除非支持向量的样本点,不会影响超平面位置。

超平面(Hyperplane)

  • 几何意义:超平面是从n维空间到n-1维空间的映射子空间。

  • 示例

    • 三维空间:超平面为二维平面。

    • 二维空间:超平面为一维直线。

  • 数学表达

    超平面方程为:

    wTx+b=0

    其中,w 为法向量(决定超平面方向),b 为偏置项(决定超平面位置)。

点到超平面的距离

  • 任意样本点 x 到超平面的距离为:

    距离=∥w∥∣wTx+b∣

    该距离公式在计算间隔时至关重要。

相关推荐
谷哥的小弟几秒前
SQLite MCP服务器安装以及客户端连接配置
服务器·数据库·人工智能·sqlite·大模型·源码·mcp
武子康2 分钟前
大数据-211 逻辑回归的 Scikit-Learn 实现:max_iter、分类方式与多元回归的优化方法
大数据·后端·机器学习
工藤学编程4 分钟前
零基础学AI大模型之旅游规划智能体之react_agent实战
人工智能·react.js·旅游
好奇龙猫9 分钟前
【人工智能学习-AI入试相关题目练习-第一次】
人工智能·学习
Java后端的Ai之路11 分钟前
【阿里AI大赛】-二手车价格预测使用五折交叉验证
人工智能·深度学习·机器学习·二手车价格预测·天池
数说星榆18112 分钟前
在线简单画泳道图工具 PC端无水印
大数据·论文阅读·人工智能·架构·流程图·论文笔记
过河卒_zh156676614 分钟前
情感型AI被“立规矩”,AI陪伴时代进入下半场
人工智能·算法·aigc·生成式人工智能·算法备案
工业HMI实战笔记14 分钟前
拯救HMI×施耐德电气|以AI重塑工业人机交互新范式
人工智能·ui·信息可视化·自动化·人机交互·交互
张彦峰ZYF15 分钟前
多智能体(Multi-Agent)系统在人工智能中的应用与发展
人工智能·autogen·metagpt·multi-agent·agentscope·camel ai·agentverse
启途AI16 分钟前
2026年课件制作新范式:AI PPT工具深度解析
大数据·人工智能·powerpoint·ppt