支持向量机

支持向量机(SVM)知识点总结

1. 基本思想

  • 目标:在样本空间中找到一个划分超平面,将不同类别的样本分开。

  • 理想超平面:对训练样本局部扰动"容忍性"最好的超平面。

2. 优化目标

  • 最大化间隔(Margin)

    SVM的核心思想是寻找一个超平面,使得该超平面到最近样本点的距离(即"间隔")最大化,从而提高泛化能力。

3. 支持向量(Support Vectors)

  • 位于间隔边界上的样本点,直接影响超平面的位置和方向。

  • 只有支持向量参与决策,其他样本点对超平面无影响。

4. 超平面(Hyperplane)

  • 定义:超平面是从n维空间到n-1维空间的一个映射子空间,由一个n维向量和一个实数定义。

  • 示例

    • 三维空间:超平面为二维平面。

    • 二维空间:超平面为一维直线。

  • 超平面方程

    wTx+b=0

    其中,w 为法向量,b 为偏置项。

5. 点到超平面的距离

  • 点 x 到超平面 wTx+b=0 的距离公式:

    距离=∥w∥∣wTx+b∣


支持向量机(SVM)学习笔记

核心思想

支持向量机(SVM)是一种经典的监督学习方法,主要用于分类任务。其核心思想是在样本空间中找到一个最优的超平面,使得不同类别的样本被有效分离,并且超平面对训练数据的局部扰动具有最好的"容忍性"。

优化目标

  • 最大化间隔(Margin)

    SVM通过最大化超平面到最近样本点的距离(即"间隔"),来提高模型的泛化能力。间隔越大,模型对未知数据的预测能力越强。

支持向量(Support Vectors)

  • 定义:支持向量是指位于间隔边界上的样本点,这些点直接决定了超平面的位置和方向。

  • 特点

    • 只有支持向量参与超平面的确定。

    • 移除非支持向量的样本点,不会影响超平面位置。

超平面(Hyperplane)

  • 几何意义:超平面是从n维空间到n-1维空间的映射子空间。

  • 示例

    • 三维空间:超平面为二维平面。

    • 二维空间:超平面为一维直线。

  • 数学表达

    超平面方程为:

    wTx+b=0

    其中,w 为法向量(决定超平面方向),b 为偏置项(决定超平面位置)。

点到超平面的距离

  • 任意样本点 x 到超平面的距离为:

    距离=∥w∥∣wTx+b∣

    该距离公式在计算间隔时至关重要。

相关推荐
高光视点1 分钟前
2025中国生物制造科技创新论坛为何“花落”常德?
人工智能·科技·制造
梓羽玩Python24 分钟前
3分钟搭建 MCP 交易平台,这个开源项目帮你搞外快!
人工智能·github·产品
柠檬味拥抱1 小时前
面向不确定环境的AI Agent鲁棒决策模型设计与实现
人工智能
zxsz_com_cn1 小时前
机床智能健康管理系统:基于多源数据融合与边缘智能的技术实现
人工智能
盼小辉丶1 小时前
PyTorch生成式人工智能——PatchGAN详解与实现
人工智能·pytorch·生成模型
柠檬味拥抱1 小时前
从Q-Learning到DQN-AI Agent自主决策能力的进化
人工智能
二向箔reverse1 小时前
CNN 中 3×3 卷积核等设计背后的底层逻辑
人工智能·神经网络·cnn
aneasystone本尊1 小时前
GraphRAG 索引构建概述
人工智能
dylan55_you1 小时前
理解AI 智能体:多智能体架构
人工智能·ai·架构·agent·多agent
用户5191495848452 小时前
使用Amazon Verified Permissions快速为Express应用API添加安全防护
人工智能·aigc