支持向量机(第二十九节课内容总结)

1. 分类边界与支持向量的几何意义

  • 超平面:用于将不同类别的数据分开,在二维情况下是直线,在更高维空间中是超平面。

  • 定义:超平面由权重向量 w 和偏置 b 定义,方程为 wTx+b=0。

  • 支持向量:距离超平面最近的样本点,位于分类边界两侧,对决策边界有决定性影响。

2. 核心优化目标------最大化间隔(Margin)

  • 间隔(Margin):两类支持向量到超平面的最短距离。

  • 优化目标:最大化间隔 D,等价于最大化 ∥w∥2​ 或最小化 ∥w∥2。

  • 鲁棒性:通过最大化间隔,提高模型对噪声和异常值的容忍度。

3. 分类约束条件的设计

  • 约束条件:所有训练样本满足 yi​(wTxi​+b)≥1,其中 yi​ 为类别标签(+1 或 -1)。

  • 拉格朗日乘子:引入 αi​ 将不等式约束转化为等式约束,构建拉格朗日函数进行优化。

4. 拉格朗日乘子法与对偶问题的求解

  • 拉格朗日乘子法:将原问题转化为对偶问题。

  • 对偶问题:在对偶问题中,参数 αi​ 成为主变量,满足 αi​≥0 且 ∑αi​yi​=0。

  • 模型参数:w=∑αi​yi​xi​,b 由 b=yi​−wTxi​ 推导得出。

  • 预测模型:y^​=sign(∑αi​yi​xiT​xj​+b)。

5. 数学推导中的关键技巧与目的

  • 误差为零:通过引入 yi​(wTxi​+b)≥1 的条件,确保模型预测与真实标签一致。

  • 简化计算:通过对目标函数进行放缩(如乘以 21​)简化计算。

  • 等价转换:利用 ∥w∥−1 的最大化等价于 ∥w∥ 的最小化。

  • 求导处理:通过处理 αi​ 转换变量,减少参数数量,提升求解效率。

相关推荐
CoovallyAIHub27 分钟前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub1 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI18 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v21 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
moonlifesudo1 天前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法