支持向量机(第二十九节课内容总结)

1. 分类边界与支持向量的几何意义

  • 超平面:用于将不同类别的数据分开,在二维情况下是直线,在更高维空间中是超平面。

  • 定义:超平面由权重向量 w 和偏置 b 定义,方程为 wTx+b=0。

  • 支持向量:距离超平面最近的样本点,位于分类边界两侧,对决策边界有决定性影响。

2. 核心优化目标------最大化间隔(Margin)

  • 间隔(Margin):两类支持向量到超平面的最短距离。

  • 优化目标:最大化间隔 D,等价于最大化 ∥w∥2​ 或最小化 ∥w∥2。

  • 鲁棒性:通过最大化间隔,提高模型对噪声和异常值的容忍度。

3. 分类约束条件的设计

  • 约束条件:所有训练样本满足 yi​(wTxi​+b)≥1,其中 yi​ 为类别标签(+1 或 -1)。

  • 拉格朗日乘子:引入 αi​ 将不等式约束转化为等式约束,构建拉格朗日函数进行优化。

4. 拉格朗日乘子法与对偶问题的求解

  • 拉格朗日乘子法:将原问题转化为对偶问题。

  • 对偶问题:在对偶问题中,参数 αi​ 成为主变量,满足 αi​≥0 且 ∑αi​yi​=0。

  • 模型参数:w=∑αi​yi​xi​,b 由 b=yi​−wTxi​ 推导得出。

  • 预测模型:y^​=sign(∑αi​yi​xiT​xj​+b)。

5. 数学推导中的关键技巧与目的

  • 误差为零:通过引入 yi​(wTxi​+b)≥1 的条件,确保模型预测与真实标签一致。

  • 简化计算:通过对目标函数进行放缩(如乘以 21​)简化计算。

  • 等价转换:利用 ∥w∥−1 的最大化等价于 ∥w∥ 的最小化。

  • 求导处理:通过处理 αi​ 转换变量,减少参数数量,提升求解效率。

相关推荐
明月照山海-9 分钟前
机器学习周报三十
人工智能·机器学习·计算机视觉
练习时长一年24 分钟前
LeetCode热题100(杨辉三角)
算法·leetcode·职场和发展
PeterClerk32 分钟前
RAG 评估入门:Recall@k、MRR、nDCG、Faithfulness
人工智能·深度学习·机器学习·语言模型·自然语言处理
lzllzz2341 分钟前
bellman_ford算法
算法
栈与堆1 小时前
LeetCode 19 - 删除链表的倒数第N个节点
java·开发语言·数据结构·python·算法·leetcode·链表
人工智能培训1 小时前
10分钟了解向量数据库(4)
人工智能·机器学习·数据挖掘·深度学习入门·深度学习证书·ai培训证书·ai工程师证书
sunfove1 小时前
麦克斯韦方程组 (Maxwell‘s Equations) 的完整推导
线性代数·算法·矩阵
Rui_Freely1 小时前
Vins-Fusion之 SFM准备篇(十二)
人工智能·算法·计算机视觉
绿洲-_-1 小时前
MBHM_DATASET_GUIDE
深度学习·机器学习
万行1 小时前
机器学习&第二章线性回归
人工智能·python·机器学习·线性回归