使用 OpenCV 实现图片的批量压缩

【Python 实战】---- 使用 OpenCV 实现图片的批量压缩

1. 前言

在日常开发中,我们经常需要处理大量的图片文件,例如调整图片大小以适应不同的显示需求或减少存储空间。本文将介绍如何使用Python和OpenCV库来批量压缩图片,并对实现相同功能的技术进行对比分析。

2. 技术对比选择

  1. Pillow库: Pillow是Python Imaging Library (PIL) 的一个分支,提供了丰富的图像处理功能。与OpenCV相比,Pillow更专注于图像处理,API更加简洁易用。但是,OpenCV在处理计算机视觉任务时更加强大。
  2. ImageMagick: ImageMagick是一个功能强大的图像处理工具集,支持多种编程语言。它提供了命令行工具和编程接口,可以处理各种图像格式。与OpenCV相比,ImageMagick在处理复杂图像操作时更加灵活,但学习曲线较陡峭。
  3. OpenCV :之所以采用 OpenCV,是因为之前学习过 OpenCV,同时之前使用 Pillow 实现过【Python实战】 ---- 批量图片压缩,所以这次开发使用 OpenCV。

3. 实现分析

  1. 读取图片 : 使用cv2.imread()函数读取图片文件。如果图片无法读取,函数会返回None,此时程序会输出错误信息并返回。
  2. 计算新高度 : 为了保持图片的宽高比,我们需要根据指定的宽度计算新的高度。公式为:height = int(width * image.shape[0] / image.shape[1]),其中image.shape[0]是原图片的高度,image.shape[1]是原图片的宽度。
  3. 调整图片大小 : 使用cv2.resize()函数调整图片大小。interpolation=cv2.INTER_AREA参数用于指定插值方法,该方法在缩小图片时效果较好。
  4. 保存图片 : 使用cv2.imwrite()函数将调整大小后的图片保存到指定路径。

4. 压缩实现代码

实现图片压缩的核心代码:

python 复制代码
import cv2
import os

def resize_image(input_path, output_path, width=600):
    # 读取图片
    image = cv2.imread(input_path)
    if image is None:
        print(f"无法读取图片: {input_path}")
        return
    
    # 计算新的高度以保持宽高比
    height = int(width * image.shape[0] / image.shape[1])
    
    # 调整图片大小
    resized_image = cv2.resize(image, (width, height), interpolation=cv2.INTER_AREA)
    
    # 保存图片
    cv2.imwrite(output_path, resized_image)
    print(f"已保存: {output_path}")

5. 批量处理实现

在主函数,用于遍历文件夹中的所有图片文件并调用resize_image函数进行处理:

python 复制代码
def main():
    # 输入和输出文件夹路径
    input_folder = "images"
    output_folder = "output"
    
    # 创建输出文件夹(如果不存在)
    os.makedirs(output_folder, exist_ok=True)
    
    # 遍历输入文件夹中的所有图片文件
    for filename in os.listdir(input_folder):
        if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
            input_path = os.path.join(input_folder, filename)
            output_path = os.path.join(output_folder, filename)
            resize_image(input_path, output_path)

if __name__ == "__main__":
    main()

6. 执行代码效果

7. 处理前图片

7.1 具体图片文件分辨率和大小

7.2 所有图片的大小

8. 处理后图片

8.1 具体图片文件分辨率和大小

8.2 所有图片的大小

9.总结

  1. 使用 OpenCV 库来批量压缩图片。通过cv2.imread()cv2.resize()cv2.imwrite()等函数,我们可以轻松实现图片的读取、调整大小和保存。
  2. 对比了其他实现相同功能的技术,如Pillow库和ImageMagick。在实际开发中,我们可以根据具体需求选择合适的技术来处理图片。
  3. 由于图片是给手机端使用,又担心图片的分辨率太低,导致在手机上展示效果不好,因此最后设置宽度是 600px,即便如此,也可以看出整体图片的总压缩将近15倍,当然具体的不能这么计算,但是在移动端访问的确解决了问题。
相关推荐
站大爷IP4 小时前
Python集合:高效处理无序唯一数据的利器
python
在钱塘江4 小时前
Langgraph从新手到老师傅-1-入门篇
人工智能·python
站大爷IP4 小时前
Python字典:从入门到精通的实用指南
python
君科程序定做4 小时前
使用 Python 自动化检查矢量面数据的拓扑错误(含导出/删除选项)
开发语言·python·自动化
猿榜4 小时前
python基础-面向对象编程(OOP)
python
都是些老物件5 小时前
如何用熵正则化控制注意力分数的分布
开发语言·python
蒋星熠5 小时前
Redis 7.0 高性能缓存架构设计与优化
数据库·redis·分布式·python·缓存·docker·微服务
雷达学弱狗6 小时前
python反转字符串
开发语言·python
数据智能老司机8 小时前
精通文本分析——自然语言处理导论
python·nlp