【量化回测】backtracker整体架构和使用示例

backtrader整体框架

backtrader 是一个量化回测的库,支持多品种、多策略、多周期的回测和交易。更重要的是可以集成 torch 等神经网络分析模块。

Cerebro类是 backtrader 的核心。Strategy类、BrokerSizer类都是由Cerebro类实例化而来。

整体流程

  • backtrade 自带的数据源是yahoofinance(),也可使用自己本地的 csv 文件。
  • DataFeed模块会将原始数据导入到 Cerebro ,之后就可以进行矢量化操作。
  • Strategy模块会根据策略将订单提交到BrokerBroker是一个抽象的交易所,里面定义了订单执行、仓位管理和交易费率等。
  • Strategy模块中包括了三个模块ObserverAnalyzerIndicatorObserver负责观测市场数据。Analyzer负责分析算法产生的数据,可以看做是一个评估模块。Indicator是指标和信号模块,策略主要通过指标和信号来判断是否触发交易。
  • Sizer主要负责仓位的管理。因为Strategy只负责触发交易,但不知道怎么分配仓位。Sizer就可以独立控制仓位管理。

数据流程

实操流程

安装环境

python 复制代码
pip install backtrader matplotlib

回测示例

注意,需要准备CSV格式的个股数据。

python 复制代码
import backtrader as bt
import pandas as pd
import matplotlib.pyplot as plt
import datetime as dt
import numpy as np


class SMAStrategy(bt.Strategy):
    '''
    自定义的策略, 需继承 bt.Strategy
    '''
    def __init__(self):
        self.dataclose = self.data0.close
        self.order = None
        self.buyprice = None
        self.buycomm = None

        self.sma = bt.indicators.SimpleMovingAverage(self.data0, period=15)

    def next(self):
        '''
        一般在这里写实际的策略。
        这里就是收盘价上穿sma买入,反之则卖出。
        '''
        if not self.position:  # 判断是否有持仓
            if self.dataclose[0] > self.sma[0]:  # 判断收盘价是否上穿sma
                self.buy()
        else:
            if self.dataclose[0] < self.sma[0]:
                self.close()  # 平仓

    def notify_order(self, order):
        '''
        获取订单状态,这个函数一般可以通用。
        '''
        if order.status in [order.Submitted, order.Accepted]:
            return
        
        if order.status in [order.Completed]:
            if order.isbuy():
                self.log(
                    'BUY EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                    order.executed.value,
                    order.executed.comm)
                )
                self.buyprice = order.executed.price
                self.buycomm = order.executed.comm
            else:
                self.log(
                    'SELL EXECUTED, Price: %.2f, Cost: %.2f, Comm %.2f' %
                    (order.executed.price,
                    order.executed.value,
                    order.executed.comm)
                )
                self.bar_executed = len(self)
        elif order.status in [order.Canceled, order.Margin, order.Rejected]:
            self.log('Drder Canceled / Margin / Rejected')
        self.order = None
    
    def notify_trade(self, trade):
        '''
        追踪每笔交易的状态,这个函数一般可以通用。
        '''
        if not trade.isclosed:
            return
        self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' %
                 (trade.pnl, trade.pnlcomm))
        
    def log(self, txt, dt=None, doprint=False):
        '''
        保存日志
        '''
        if doprint:
            dt = dt or self.datas[0].datetiem.date(0)
            print('%s, %s' % (dt.isoformat(), txt))



if __name__ == "__main__":
    # 实例化cerebro
    cerebro = bt.Cerebro()

    # 处理数据
    dataframe = pd.read_csv('TSLA.csv')
    dataframe['Datetime'] = pd.to_datetime(dataframe['Date'])
    dataframe.set_index('Datetime', inplace=True)

    # 加载数据源
    data_TSLA = bt.feeds.PandasData(dataname = dataframe,
                                    fromdate = dt.datetime(2025,1,2), 
                                    todate = dt.datetime(2025,1,31))
    cerebro.adddata(data_TSLA)

    # 加载策略
    cerebro.addstrategy(SMAStrategy)

    # 加载Analyzer
    cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name="SharpeRatio")
    cerebro.addanalyzer(bt.analyzers.DrawDown, _name = "DrawDown")

    # 在Broker中设置初始资金和手续费
    cerebro.broker.setcash(10000.0)
    cerebro.broker.setcommission(commission = 0.0006)

    # 设置Sizer
    cerebro.addsizer(bt.sizers.PercentSizer, percents = 90)

    result = cerebro.run()

    print("夏普比率", result[0].analyzers.SharpeRatio.get_analysis()['sharperatio'])
    print("最大回撤", result[0].analyzers.DrawDown.get_analysis["max"]['drawdown'])
    cerebro.plot()

参考:【【Backtrader教程01】Python Backtrader量化回测框架 | 代码实战教学 | 单均线回测收益率570%?】 https://www.bilibili.com/video/BV1QR4y147rS/?share_source=copy_web\&vd_source=9eb6d7fad45f9fa869cd9abb34fa68ca

相关推荐
Hi~晴天大圣14 小时前
if 变量和if not 变量用法之布尔真假值规则
python·if
老歌老听老掉牙14 小时前
Vericut 5轴机床MCH文件解析与构建指南
xml·python·vericut
BoBoZz1914 小时前
Glyph2D 同一个图形根据点云的输入产生不同位置的输出
python·vtk·图形渲染·图形处理
一笑code14 小时前
pycharm vs vscode安装python的插件
vscode·python·pycharm
liwulin050614 小时前
【PYTHON-YOLOV8N】yoloface+pytorch+cnn进行面部表情识别
python·yolo·cnn
(●—●)橘子……15 小时前
记力扣1471.数组中的k个最强值 练习理解
数据结构·python·学习·算法·leetcode
_OP_CHEN15 小时前
用极狐 CodeRider-Kilo 开发俄罗斯方块:AI 辅助编程的沉浸式体验
人工智能·vscode·python·ai编程·ai编程插件·coderider-kilo
Wpa.wk15 小时前
自动化测试 - 文件上传 和 弹窗处理
开发语言·javascript·自动化测试·经验分享·爬虫·python·selenium
_OP_CHEN15 小时前
【Python基础】(二)从 0 到 1 入门 Python 语法基础:从表达式到运算符的全面指南
开发语言·python
我命由我1234515 小时前
Python Flask 开发:在 Flask 中返回字符串时,浏览器将其作为 HTML 解析
服务器·开发语言·后端·python·flask·html·学习方法