【Spark Core】(三)RDD的持久化

1 RDD的数据是过程数据

  • RDD之间进行相互迭代计算(Transform转换),当执行开启后,新的RDD生成,老的RDD消失
  • RDD的数据是过程数据,只在处理的过程中存在,一旦处理完成就不见了。
  • 这个特性可以最大化利用资源,老的RDD没用了,就从内存中清除,给后续的计算腾出内存。

2 RDD缓存

  • RDD缓存:Spark提供了缓存API,可以通过调用API将指定的RDD数据保留在内存或硬盘上

  • 缓存在设计上认为是不安全的,会保存前置RDD的血缘关系

  • 缓存是分散存储的

    RDD3被两次使用,可以加入缓存进行优化

    rdd.cache() # 缓存到内存中
    rdd.persist(StorageLevel.MEMORY_ONLY) # 仅内存缓存
    rdd.persist(StorageLevel.MEMORY_ONLY_2) # 仅内存缓存,2副本
    rdd.persist(StorageLevel.DISK_ONLY) # 仅磁盘缓存
    rdd.persist(StorageLevel.DISK_ONLY_2) # 仅磁盘缓存,2副本
    rdd.persist(StorageLevel.MEMORY_AND_DISK) # 先缓存到内存,不够缓存到硬盘
    rdd.persist(StorageLevel.MEMORY_AND_DISK_2) # 先缓存到内存,不够缓存到硬盘,2副本
    rdd.persist(StorageLevel.OFF_HEAP) # 堆外内存(系统内存)

    一般建议使用rdd3.persist(StorageLevel.MEMORY_AND_DISK)

    内存较小的集群,建议使用rdd3.persist(StorageLevel.DISK_ONLY) 或使用CheckPoint

    主动清理缓存的API

    rdd.unperisist()

3 RDD CheckPoint

  • CheckPoint仅支持硬盘缓存(HDFS)

  • CheckPoint设计上认为是安全的,不保留血缘关系

  • CheckPoint是集中收集各个分区数据进行存储的

    设置CheckPoint第一件事:选择CP的保存路径

    如果是local模式,可以支持本地文件系统,如果在集群运行,务必用HDFS

    sc.setCheckpointDir("hdfs://node1:8020/output/aaa123ckp")

    使用时直接调用checkpoint算子即可

    rdd.checkpoint()

4 缓存 VS CheckPoint

  • CheckPoint不论分区数量多少,风险一致;缓存分区越多,风险越高
  • CheckPoint支持写入HDFS;缓存不支持。HDFS是高可靠存储,CheckPoint被认为是安全的
  • CheckPoint不支持内存;缓存支持。缓存如果写内存,性能比CheckPoint好
  • CheckPoint设计上认为是安全的,所以不保留血缘关系;缓存设计上认为是不安全的,所以保留血缘关系。
相关推荐
ManageEngineITSM1 小时前
技术的秩序:IT资产与配置管理的现代重构
大数据·运维·数据库·重构·工单系统
一周困⁸天.4 小时前
Elasticsearch+Logstash+Filebeat+Kibana部署【7.1.1版本】
大数据·elk·elasticsearch·jenkins
档案宝档案管理4 小时前
档案宝:企业合同档案管理的“安全保险箱”与“效率加速器”
大数据·数据库·人工智能·安全·档案·档案管理
workflower5 小时前
FDD(Feature Driven Development)特征驱动开发
大数据·数据库·驱动开发·需求分析·个人开发
JH30736 小时前
《Redis 经典应用场景(一):缓存、分布式锁与限流》
redis·分布式·缓存
熙客7 小时前
Elasticsearch:分布式搜索引擎数据库
分布式·elasticsearch·搜索引擎
YangYang9YangYan9 小时前
高职新能源汽车技术专业职业发展指南
大数据·人工智能·数据分析·汽车
河南博为智能科技有限公司9 小时前
RS485转以太网串口服务器-串口设备联网的理想选择
大数据·服务器·人工智能·单片机·嵌入式硬件·物联网
Hello.Reader9 小时前
Spark RDD 编程从驱动程序到共享变量、Shuffle 与持久化
大数据·分布式·spark
VXHAruanjian88810 小时前
以智促效,释放创新力量,RPA助力企业全面自动化变革
大数据·人工智能