【Spark Core】(三)RDD的持久化

1 RDD的数据是过程数据

  • RDD之间进行相互迭代计算(Transform转换),当执行开启后,新的RDD生成,老的RDD消失
  • RDD的数据是过程数据,只在处理的过程中存在,一旦处理完成就不见了。
  • 这个特性可以最大化利用资源,老的RDD没用了,就从内存中清除,给后续的计算腾出内存。

2 RDD缓存

  • RDD缓存:Spark提供了缓存API,可以通过调用API将指定的RDD数据保留在内存或硬盘上

  • 缓存在设计上认为是不安全的,会保存前置RDD的血缘关系

  • 缓存是分散存储的

    RDD3被两次使用,可以加入缓存进行优化

    rdd.cache() # 缓存到内存中
    rdd.persist(StorageLevel.MEMORY_ONLY) # 仅内存缓存
    rdd.persist(StorageLevel.MEMORY_ONLY_2) # 仅内存缓存,2副本
    rdd.persist(StorageLevel.DISK_ONLY) # 仅磁盘缓存
    rdd.persist(StorageLevel.DISK_ONLY_2) # 仅磁盘缓存,2副本
    rdd.persist(StorageLevel.MEMORY_AND_DISK) # 先缓存到内存,不够缓存到硬盘
    rdd.persist(StorageLevel.MEMORY_AND_DISK_2) # 先缓存到内存,不够缓存到硬盘,2副本
    rdd.persist(StorageLevel.OFF_HEAP) # 堆外内存(系统内存)

    一般建议使用rdd3.persist(StorageLevel.MEMORY_AND_DISK)

    内存较小的集群,建议使用rdd3.persist(StorageLevel.DISK_ONLY) 或使用CheckPoint

    主动清理缓存的API

    rdd.unperisist()

3 RDD CheckPoint

  • CheckPoint仅支持硬盘缓存(HDFS)

  • CheckPoint设计上认为是安全的,不保留血缘关系

  • CheckPoint是集中收集各个分区数据进行存储的

    设置CheckPoint第一件事:选择CP的保存路径

    如果是local模式,可以支持本地文件系统,如果在集群运行,务必用HDFS

    sc.setCheckpointDir("hdfs://node1:8020/output/aaa123ckp")

    使用时直接调用checkpoint算子即可

    rdd.checkpoint()

4 缓存 VS CheckPoint

  • CheckPoint不论分区数量多少,风险一致;缓存分区越多,风险越高
  • CheckPoint支持写入HDFS;缓存不支持。HDFS是高可靠存储,CheckPoint被认为是安全的
  • CheckPoint不支持内存;缓存支持。缓存如果写内存,性能比CheckPoint好
  • CheckPoint设计上认为是安全的,所以不保留血缘关系;缓存设计上认为是不安全的,所以保留血缘关系。
相关推荐
GIS数据转换器几秒前
GIS+大模型助力安全风险精细化管理
大数据·网络·人工智能·安全·无人机
hg01186 分钟前
今年前10个月天津进出口总值6940.2亿元
大数据
每天进步一点_JL1 小时前
事务与消息中间件:分布式系统中的可见性边界问题
分布式·后端
byte轻骑兵1 小时前
时序数据库选型指南:从大数据视角看IoTDB的核心优势
大数据·时序数据库·iotdb
Leo.yuan2 小时前
制造业都在说BOM,为什么BOM这么重要?
大数据·bom·企业数字化·数字赋能
能鈺CMS2 小时前
内容付费系统全面解析:构建知识变现体系的最强工具(2025 SEO 深度专题)
大数据·人工智能·html
静若繁花_jingjing4 小时前
ZooKeeper & Nacos
分布式·zookeeper·云原生
wanhengidc4 小时前
云手机中分布式存储的功能
运维·服务器·分布式·游戏·智能手机·云计算
u***j3244 小时前
HarmonyOS分布式能力核心技术深度解析
分布式·华为·harmonyos
7***n754 小时前
HarmonyOS分布式数据管理
分布式·华为·harmonyos