腾讯最新开源HunyuanVideo-Foley本地部署教程:端到端TV2A框架,REPA策略+MMDiT架构,重新定义视频音效新SOTA!

一、模型介绍

HunyuanVideo-Foley 是腾讯混元团队在2025年8月底开源的一款端到端视频音效生成模型。它旨在解决AI生成视频"有画无声"的痛点,通过输入视频和文本描述,就能自动生成电影级别的同步音效,显著提升视频的沉浸感。

它是专为视频内容创作者设计的专业级 AI 工具,广泛适用于短视频创作、电影制作、广告创意、游戏开发等多种场景。

🎯 核心亮点

🎬 多场景视听同步

支持生成与复杂视频场景同步、语义对齐的高质量音频,增强影视和游戏应用的真实感和沉浸式体验。

⚖️ 多模态语义平衡

智能平衡视觉和文本信息分析,全面编排音效元素,避免片面生成,满足个性化配音需求。

🎵 高保真音频输出

自主研发的 48kHz 音频 VAE 完美重构音效、音乐、人声,实现专业级音频生成品质。

二、模型部署步骤

部署环境

Ubuntu 22.04
cuda 12.04
python 3.10
NVIDIA Corporation RTX 3090

1.更新基础的软件包

查看系统版本信息

bash 复制代码
#查看系统的版本信息,包括ID(如ubuntu、centos等)、版本号、名称、版本号ID等
cat /etc/os-release

配置国内源

apt 配置阿里源

将以下内容粘贴进文件中

arduino 复制代码
deb http://mirrors.aliyun.com/debian/ bullseye main non-free contrib
deb-src http://mirrors.aliyun.com/debian/ bullseye main non-free contrib
deb http://mirrors.aliyun.com/debian-security/ bullseye-security main
deb-src http://mirrors.aliyun.com/debian-security/ bullseye-security main
deb http://mirrors.aliyun.com/debian/ bullseye-updates main non-free contrib
deb-src http://mirrors.aliyun.com/debian/ bullseye-updates main non-free contrib
deb http://mirrors.aliyun.com/debian/ bullseye-backports main non-free contrib
deb-src http://mirrors.aliyun.com/debian/ bullseye-backports main non-free contrib

2.基础 Miniconda3 环境

查看系统是否有 miniconda 的环境

复制代码
conda -V

显示如上输出,即安装了相应环境,若没有 miniconda 的环境,通过以下方法进行安装

bash 复制代码
#下载 Miniconda 安装脚本
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
#运行 Miniconda 安装脚本
bash Miniconda3-latest-Linux-x86_64.sh
#初次安装需要激活 base 环境
source ~/.bashrc

按下回车键(enter)

输入 yes

输入 yes

安装成功如下图所示

3.创建虚拟环境

创建名为Hun的虚拟环境

ini 复制代码
conda activate -n Hun python==3.10 

激活虚拟环境

4.从 github 仓库克隆项目

输入命令克隆并进入项目

bash 复制代码
git clone https://github.com/Tencent-Hunyuan/HunyuanVideo-Foley.git
cd HunyuanVideo-Foley

5.下载模型依赖库

复制代码
pip install -r requirement.txt

出现如图即为下载完毕

6.下载模型文件

css 复制代码
modelscope download --model Tencent-Hunyuan/HunyuanVideo-Foley --local_dir .

7.运行文件拉起界面

复制代码
python gradio_app.py
相关推荐
小鸡吃米…6 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)7 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan7 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维7 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS7 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd7 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟8 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然8 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~8 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1