简单聊聊3D高斯与传统深度学习在使用CUDA时的不同

本文参考链接:

https://www.youtube.com/watch?v=1buFrKUaqwM

最近在看3D高斯的源代码,发现其中submodules文件夹下有许多的.cu文件。进一步的,发现其中的代码是使用C++实现的,且涉及对CUDA核心的直接使用。代码用CUDA直接实现了3D高斯实验中的一些计算问题。如计算3D高斯在二维屏幕上的投影、将投影转化成近似圆、计算tile等操作...

令我疑惑的是3DGS的源代码明明使用了Pytorch,这些涉及算法核心原理的步骤为什么不直接使用pytorch实现,为什么会多出这些.cu源码?

原来,Pytorch之所以称为"深度学习框架",是因为pytorch是一种更高层的封装,pytorch集成了许多在深度学习中使用的算子,如卷积、池化、激活函数等。这些算子显然在一般的深度学习任务中能够非常方便的使用,提高工作效率。

3DGS与此的不同之处在于,3DGS是一门渲染技术,本质上并不涉及这些常规的深度学习算子 操作。3DGS为了能够使用GPU进行并行运算,其源码部分进行了自定义的算子,这些算子能够实现3DGS所需要的光栅化操作。

而在整个代码的外层,仍是由pytorch进行对接,而核心的计算部分,是自定义的算子。而非pytorch本身集成的算子。

所以本质上,3DGS只是与一般的神经网络思路相同,包含前向传播和反向传播两个过程。并没有卷积等提取图像特征的工作,取而代之的是图像的光栅化技术。

相关推荐
ASF1231415sd19 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟19 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然20 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~20 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1
岁月宁静20 小时前
当 AI 越来越“聪明”,人类真正的护城河是什么:智商、意识与认知主权
人工智能
CareyWYR20 小时前
每周AI论文速递(260105-260109)
人工智能
智能相对论20 小时前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
齐齐大魔王20 小时前
Pascal VOC 数据集
人工智能·深度学习·数据集·voc
程途拾光15820 小时前
幻觉抑制:检索增强生成(RAG)的优化方向
人工智能
野豹商业评论20 小时前
千问发力:“AI家教”开始抢教培生意?
人工智能