Agentic Design Patterns设计模式

Agentic Design Patterns

image

A Hands-On Guide to Building Intelligent Systems[1], Antonio Gulli**

Table of Contents - total 424 pages = 1+2+1+1+4+9+103+61+34+114+74+5+4 11

Dedication, 1 page

Acknowledgment, 2 pages [final, last read done]**

Foreword, 1 page **[final, last read done]

A Thought Leader's Perspective: Power and Responsibility **[final, last read done]

Introduction, 4 pages [final, last read done]

What makes an AI system an "agent"?, 9 pages [final, last read done]

Part One, (Total: 103 pages)

  1. Chapter 1: Prompt Chaining (code), 12 pages [final, last read done, code ok]

  2. Chapter 2: Routing (code), 13 pages [fina, last read done, code ok]

  3. Chapter 3: Parallelization (code), 15 pages [final, last read done, code okl]

  4. Chapter 4: Reflection(code), 13 pages [final, last read done, code okl]

  5. Chapter 5: Tool Use (code), 20 pages [final, last read done, code ok]

  6. Chapter 6: Planning (code), 13 pages [final, last read done, code ok]

  7. Chapter 7: Multi-Agent (code), 17 pages [final, last read done, code ok], 121

Part Two (Total: 61 pages)

  1. Chapter 8: Memory Management (code), 21 pages [final, last read done, code ok]

  2. Chapter 9: Learning and Adaptation (code), 12 pages [final, last read done, code ok]

  3. Chapter 10: Model Context Protocol (MCP) (code), 16 pages [final, last read done, code ok]

  4. Chapter 11: Goal Setting and Monitoring (code), 12 pages [final, last read don, code oe], 182

Part Three (Total: 34 pages)

  1. Chapter 12: Exception Handling and Recovery (code), 8 pages [final, last read done, code ok]

  2. Chapter 13: Human-in-the-Loop (code), 9 pages [final, last read done, code ok]

  3. Chapter 14: Knowledge Retrieval (RAG) (code), 17 pages [final, last read done, code ok], 216

Part Four (Total: 114 pages)

  1. Chapter 15: Inter-Agent Communication (A2A) (code), 15 pages [final, last read done, code ok]

  2. Chapter 16: Resource-Aware Optimization (code), 15 pages [final, last read done, code ok]

  3. Chapter 17: Reasoning Techniques (code), 24 pages [final, last read done, code ok]

  4. Chapter 18: Guardrails/Safety Patterns (code), 19 pages [final, last read done, code ok]

  5. Chapter 19: Evaluation and Monitoring (code), 18 pages [final, last read done, code ok]

  6. Chapter 20: Prioritization (code), 10 pages [final, last read done, code ok ]

  7. Chapter 21: Exploration and Discovery (code), 13 pages [final, last read done, code ok], 330

Appendix (Total: 74 pages)

  1. Appendix A: Advanced Prompting Techniques, 28 pages [final, last read done, code ok]

  2. Appendix B - AI Agentic ....: From GUI to Real world environment, 6 pages [final, last read done, code ok]

  3. Appendix C - Quick overview of Agentic Frameworks, 8 pages [final, last read done, code ok] ,

  4. Appendix D - Building an Agent with AgentSpace (on-line only), 6 pages [final, last read done, code ok]

  5. Appendix E - AI Agents on the CLI (online), 5 pages [final, last read done, code ok]

  6. Appendix F - Under the Hood: An Inside Look at the Agents' Reasoning Engines, 14 pages [final, lrd, code ok],

  7. Appendix G - Coding agents, 7 pages 406

Conclusion, 5 pages [final, last read done]

Glossary, 4 pages [final, last read done]

Index of Terms, 11 pages (Generated by Gemini. Reasoning step included as an agentic example) [final, lrd]

OnlineContribution- Frequently Asked Questions: Agentic Design Patterns

Pre Prin t: https://www.amazon.com/Agentic-Design-Patterns-Hands-Intelligent/dp/3032014018/

相关推荐
后端小肥肠7 小时前
别再盲目抽卡了!Seedance 2.0 成本太高?教你用 Claude Code 100% 出片
人工智能·aigc·agent
bryceZh8 小时前
Agent-Skills使用指南
agent·cursor
_Johnny_11 小时前
PAC 分流配置文件使用指南
agent·proxy·pac
jerrywus11 小时前
我写了个 Claude Code Skill,再也不用手动切图传 COS 了
前端·agent·claude
Lsx_12 小时前
前端视角下认识 AI Agent 和 LangChain
前端·人工智能·agent
laplace012313 小时前
mcp和skills区别
agent·rag·mcp·skills
jerrywus16 小时前
一句话生成整套 API:我用 Claude Code 自定义 Skill + MCP 搞了个接口代码生成器
agent·claude
数据智能老司机16 小时前
用于构建多智能体系统的智能体架构模式——可解释性与合规性的智能体模式
人工智能·llm·agent
数据智能老司机16 小时前
用于构建多智能体系统的智能体架构模式——人类—智能体交互模式
人工智能·llm·agent
数据智能老司机16 小时前
用于构建多智能体系统的智能体架构模式——高级适配:打造具备学习能力的智能体
人工智能·llm·agent